• Title/Summary/Keyword: asteroid exploration

Search Result 17, Processing Time 0.026 seconds

Deep Space Maneuver by Microwave Discharge Ion Engines onboard "HAYABUSA" Asteroid Explorer

  • Kuninaka, Hitoshi;Nishiyama, Kazutaka;Shimizu, Yukio;Toki, Kyoichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.306-313
    • /
    • 2004
  • The microwave discharge ion engine generates plasmas of both the main ion source and the neutralizer using 4㎓ microwave without discharge electrodes and hollow cathodes, so that long life and durability against oxygen and air are expected. The MUSES-C “HAYABUSA” asteroid explorer installing four microwave discharge ion engines “$\mu$10s” was launched into deep space by M-V rocket No.5 on May 9, 2003. After vacuum exposure and several runs of baking for reduction of residual gas the ion engine system established the continuous acceleration of the spacecraft toward the asteroid “ITOKAWA”. The Doppler shift measurement of the communication microwave revealed the performance of ion engines, which is 8mN thrust force for a single unit with 3,200sec specific impulse at 23mN/㎾ thrust power ratio. At the end of 2003 the accumulated operational time exceeded 8,000 hour and unit. HAYABUSA will execute the Earth swing-by on June 2004 and arrive at the asteroid in 2005 and return to Earth in 2007.

  • PDF

Rendezvous Mission to Apophis: I. Mission Overview

  • Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2021
  • An asteroid is important for understanding the condition of our solar system in early-stage because an asteroid, considered as a building block of the solar system, preserves the information when our solar system was formed. It has been continuously flowing into the near-Earth space, and then some asteroids have a probability of impacting Earth. Some asteroids have valuable minerals and volatiles for future resources in space activity. Korean government clarified, in the 3rd promotion plan for space activity, an asteroid sample return mission by the mid-2030s. However, it is almost impossible to do so based on only a single experience of an exploration mission to the Moon, Korea Pathfinder Lunar Orbiter, which will be launched in mid-2022. We propose a Rendezvous Mission to Apophis(RMA), beneficial in terms of science, impact hazardous, resource, and technical readiness for the space exploration of Korea.

  • PDF

A PANORAMIC VIEW OF THE ASTEROIDS IN THE INNER SOLAR SYSTEM WITH AKARI

  • Usui, F.;Kuroda, D.;Muller, T.G.;Hasegawa, S.;Ishiguro, M.;Ootsubo, T.;Ueno, M.;AKARI SOSOS team, AKARI SOSOS team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • We constructed an unbiased asteroid catalog from the mid-infrared part of the All-Sky Survey with the Infrared Camera (IRC) on board AKARI. About 20% of the point source events recorded in the IRC All-Sky Survey observations were not used for the IRC Point Source Catalog in its production process because of a lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, are included in these "residual events" We identified asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculated the size and albedo based on the Standard Thermal Model. Finally we had a new brand of asteroid catalog, which contains 5,120 objects, about twice as many as the IRAS asteroid catalog.

A Study on the Method of Calculating the Launch Period of the Asteroid Exploration Mission (소행성 탐사선의 발사시기 산출 방안에 관한 연구)

  • Kim, Bangyeop;Rew, Dong-Young
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.302-318
    • /
    • 2021
  • A basic study was conducted on how to determine the launch timing of a space probe targeting an Earth-approaching asteroid. In the future, when a probe mission targeting an asteroid approaching Earth's orbit is conducted in Korea, in order to determine the launch time, an appropriate solution should be obtained by applying the Global Optimization technique. For this, accurate current orbit information of each asteroid must be obtained first, and prior scenarios such as Earth's orbit information, main engine performance information of the probe and launch vehicle, the number of gravity-assisted maneuvers, and maximum flight time limit should be discussed. Also, the criteria for optimization should be determined first. In this paper, based on these prerequisites and information, a method for finding the launch time of an asteroid probe was studied using the open source software such as PyKEP and Evolutionary Mission Trajectory Generator (EMTG) which are the programs for interplanetary trajectory generation purpose.

SIZE AND ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE COMPARATIVE STUDY OF INFRARED ASTEROID SURVEYS: IRAS, AKARI, AND WISE

  • Usui, Fumihiko;Hasegawa, Sunao;Ishiguro, Masateru;Muller, Thomas G.;Ootsubo, Takafumi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.55-57
    • /
    • 2017
  • Presently, the number of known asteroids is more than 710,000. Knowledge of size and albedo is essential in many aspects of asteroid research, such as the chemical composition and mineralogy, the size-frequency distribution of dynamical families, and the relationship between small bodies in the outer solar system or comets. Recently, based on the infrared all-sky survey data obtained by IRAS, AKARI, and WISE, the large asteroid catalogs containing size and albedo data have been constructed. In this paper, we discuss the compositional distribution in the main belt regions based on the compiled data on size, albedo, and separately obtained taxonomic type information.

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

Investigation of surface homogeneity of (3200) Phaethon

  • Lee, Hee-Jae;Kim, Myung-Jin;Kim, Dong-Heun;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Chun-Hwey;Lee, Byeong-Cheol;Yoshida, Fumi;Roh, Dong-Goo;Seo, Haingja
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2018
  • We present observational evidence of the surface homogeneity on Phaethon based on the time-series multi-band photometry and spectrometry. The observations of Phaethon were conducted in Nov.-Dec. 2017. We confirmed that Phaethon is a B-type asteroid, as was previously known, and its rotational color variation was not detected. During our observation period, the sub-solar latitude of this asteroid was approximately $55^{\circ}S$, corresponding to the southern hemisphere of the body. Thus, we found that the southern hemisphere of Phaethon has a homogeneous surface from our observation results. In addition, we compared our spectra with archival data to investigate the latitudinal surface properties of the asteroid. The result showed that it doesn't have a latitudinal color variation. To verify this assumption, we investigated its solar-radiation heating effect, and the result suggested that this asteroid underwent a uniform thermal metamorphism regardless of latitude, which is consistent with our observations. Based on this result, we discuss the homogeneity of the surface of the body.

  • PDF

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF

International Legal Status of U.S. Citizens Property Right to Space Resources (미국 국내법령상 우주자원 소유권의 국제법상 의의)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.419-442
    • /
    • 2018
  • Space Treaty Article 2 stipuates non-appropriation by sovereignty, and in any other means. Interpretative controversies has continued as regards the meaning of any other means. It is not clear whether appropriation by private entity is also prohibited or not. Furthermore, the controverse around the binding force of Article 1 has made worse the controversy regarding such appropriation. U.S. Congress has enacted the law regarding the space resouce mining in 2015. Its main purpose is to alleviate legal unstability which U.S, private companies have faced, and it provides some provisions regarding private rights about space resources. Original bill, H.R. 1508 included the property right. Amendment to the bill is to ensure that an "asteroid resource utilization activity" is inter-preted as on a single asteroid and not on any asteroid. The use of the word "in situ" in defining space resources simply means resources in place in outer space; but any such resource within or on an asteroid would need to be "obtained" in order to confer a property right. The use of the word "in situ" in merely defining a space resource in the bill is not equivalent to claiming sovereignty or control over celestial bodies or portions of space. Further, there is clear Congressional direction in the bill that the President is only to encourage space resources exploration and utilization, including lowering barriers to such activity, "consistent with" and "in accordance with" US international obligations. Federal courts are granted original jurisdiction over entities defined in ${\S}$ 51301(4) and in-situ asteroid resources that have been removed from an asteroid by such entities. Federal courts are not granted jurisdiction over outer space, the Moon, other celestial bodies, or the asteroid from which the in-situ natural resource was removed. It is said that the Space Resource Utilization Exploration Act of 2015, talked about the rights of private players to own-kind of a "finders keepers" law.

Geotechnical Exploration Technologies for Space Planet Mineral Resources Exploration (우주 행성 광물 자원 탐사를 위한 지반 탐사 기술)

  • Ryu, Geun-U;Ryu, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.19-33
    • /
    • 2022
  • Planarity geotechnical exploration missions were actively performed during the 1970s and there was a period of decline from the 1 990s to the 2000s because of budget. However, exploring space resources is essential to prepare for the depletion of Earth's resources in the future and explore resources abundant in space but scarce on Earth, such as rare earth and helium-3. Additionally, the development of space technology has become the driving force of future industry development. The competition among developed countries for exoplanet exploration has recently accelerated for the exploration and utilization of space resources. For these missions and resource exploration/mining, geotechnical exploration is required. There have been several missions to explore exoplanet ground, including the Moon, Mars, and asteroids. There are Apollo, LUNA, and Chang'E missions for exploration of the Moon. The Mars missions included Viking, Spirit/Opportunity, Phoenix, and Perseverance missions, and the asteroid missions included the Hayabusa missions. In this study, space planetary mineral resource exploration technologies are explained, and the future technological tasks of Korea are described.