• 제목/요약/키워드: assumed natural strain

검색결과 51건 처리시간 0.02초

활절로 지지된 원통형 적층복합쉘의 기하학적 비선형 해석 (Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells)

  • 한성천
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.1-10
    • /
    • 2012
  • In the present study, an Element-Based Lagrangian Formulation for the nonlinear analysis of shell structures is presented. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the anisotropic composite material. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Numerical examples for laminated composite curved shells presented herein clearly show the validity of the present approach and the accuracy of the developed shell element.

기하학적 비선형 해석을 위한 곡면 2차 삼각형 쉘 요소에 관한 연구 (Curved quadratic triangular degenerated-shell elements for geometric non-linear analysis)

  • 김창호
    • 한국항공우주학회지
    • /
    • 제33권2호
    • /
    • pp.46-53
    • /
    • 2005
  • 곡면 사각형 쉘 요소들이 다수인 것에 비해, 곡면 삼각형 요소들은 아주 소수이다. 이미 발표된, 선형 해석을 위한 6절점 2차 쉘 요소의 가정 자연 변형도 이론에 기초해, 본 연구에서는 6절점 쉘 요소의 기하학적 비선형 해석을 수행하였다. 쉘 요소는 표준 절점 자유도만으로 곡면 모델링이 가능하고, 수치해석 결과가 보여주는 바와 같이 다양한 잠김 현상들을 제거하는데 효율적인 요소임을 확인하였다.

A refined finite element for first-order plate and shell analysis

  • Han, Sung-Cheon;Kanok-Nukulchai, Worsak;Lee, Won-Hong
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.191-213
    • /
    • 2011
  • This paper presents an improved 8-node shell element for the analysis of plates and shells. The finite element, based on a refined first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the different patterns of sampling points for interpolating different components of strains. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Further, a refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. Numerical examples demonstrate that the present element perform better in comparison with other shell elements.

Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements

  • Katili, Andi Makarim;Maknun, Imam Jauhari;Katili, Irwan
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.527-536
    • /
    • 2019
  • This paper will compare $T3{\gamma}_s$ and MITC3 elements, both these two elements are three-node triangular plate bending elements with three degrees of freedom per node. The formulation of the $T3{\gamma}_s$ and MITC3 elements is rather simple and has already been widely used. This paper will prove that the shear strain formulation of these two elements is identical even though they are obtained from two different methods. A single element is used to test the formulation of shear strain matrices. Numerical tests for circular plate cases compared with the exact solutions and with DKMT element will complete this review to verify the performances and show the convergence of these two elements.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

보강된 구조물의 기하학적 비선형 해석을 위한 편심 응축 셸 요소 (An Eccentric Degenerated Shell Element for the Geometrically Nonlinear Analysis of Stiffened Structures)

  • 이원재;이병채
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1721-1730
    • /
    • 2000
  • An eccentric degenerated shell element with geometric non-linearity for the precise and efficient analysis of stiffened shell structures is developed. To deal with the eccentricity, we define the e ccentric shell and the master shell that constitute one combined shell. It is assumed that the sections remain plane after deformation. The internal force vector and the tangent stiffness matrix based on the virtual work principle in the natural coordinate system are derived. To enhance the robustness of the element, assumed strain method for transverse shear and membrane strains is used. Through numerical experiments the effectiveness of the proposed element is demonstrated.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

강성 저하된 적층복합판의 비선형 해석 (Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation)

  • 한성천;박원태;이원홍
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2661-2669
    • /
    • 2010
  • 본 연구에서는 매트릭스가 손상된 적층복합판의 비선형 거동을 분석하기 위한 일차전단변형이론에 기초한 유한요소 정식을 유도하였다. Duan and Yao가 제안한 Matrix 균열의 강성 치환 방법을 적용하여 다방향 강성저하식을 구성하였다. 발생된 Matrix 균열은 탄성계수, 전단탄성계수 및 프아송비의 변화로 표현할 수 있으며, 이를 이용하여 판의 국부 강성 변화를 예측할 수 있다. 가정된 자연변형률 방법을 적용한 쉘요소를 이용하여 면내 및 전단잠김 현상이 발생하지 않았다. 적층복합판의 선형해석은 물론 비선형 해석결과들은 참고문헌의 결과들에 수렴되었다. 매트릭스가 손상된 적층복합판의 해석 결과들은 향후 연구에 비교자료로 활용될 수 있을 것이다.

Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method

  • Gao, Yang;Xiao, Wan-Shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.205-219
    • /
    • 2019
  • This paper analyzes nonlinear free vibration of the circular nano-tubes made of functionally graded materials in the framework of nonlocal strain gradient theory in conjunction with a refined higher order shear deformation beam model. The effective material properties of the tube related to the change of temperature are assumed to vary along the radius of tube based on the power law. The refined beam model is introduced which not only contains transverse shear deformation but also satisfies the stress boundary conditions where shear stress cancels each other out on the inner and outer surfaces. Moreover, it can degenerate the Euler beam model, the Timoshenko beam model and the Reddy beam model. By incorporating this model with Hamilton's principle, the nonlinear vibration equations are established. The equations, including a material length scale parameter as well as a nonlocal parameter, can describe the size-dependent in linear and nonlinear vibration of FGM nanotubes. Analytical solution is obtained by using a two-steps perturbation method. Several comparisons are performed to validate the present analysis. Eventually, the effects of various physical parameters on nonlinear and linear natural frequencies of FGM nanotubes are analyzed, such as inner radius, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume indexes, different beam models.

에너지 방법을 이용한 Euler-Bernoulli 보의 손상 규명 (Crack Identification of Euler-Bernoulli Beam Using the Strain Energy Method)

  • 허영철;김재관;김병현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.396-400
    • /
    • 2006
  • We studied the influences of open cracks in free vibrating beam with rectangular section using a numerical model. The crack was assumed to be single and always open during the free vibration and equivalent bending stiffness of a cracked beam was calculated based on the strain energy balance. By Galerkin's method, the frequencies of cantilever beam could he obtained with respect to various crack depths and locations. Also, the experiments on the cracked beams were carried out to find natural frequencies. The cracks were initiated at five locations and the crack depths were increased by five steps at each location. The experimental results were compared with the numerical results and the comparison results were discussed.

  • PDF