• Title/Summary/Keyword: association-rule

Search Result 1,233, Processing Time 0.035 seconds

Association rule ranking function using conditional probability increment ratio (조건부 확률증분비를 이용한 연관성 순위 결정 함수)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.709-717
    • /
    • 2010
  • The task of association rule mining is to find certain association relationships among a set of data items in a database. There are three primary measures for association rule, support and confidence and lift. In this paper we developed a association rule ranking function using conditional probability increment ratio. We compared our function with several association rule ranking functions by some numerical examples. As the result, we knew that our decision function was better than the existing functions. The reasons were that the proposed function of the reference value is not affected by a particular association threshold, and our function had a value between -1 and 1 regardless of the range for three association thresholds. And we knew that the ranking function using conditional probability increment ratio was very well reflected in the difference between association rule measures and the minimum association rule thresholds, respectively.

A study on insignificant rules discovery in association rule mining (연관성규칙에서 의미 없는 규칙의 발견에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • Association rule mining searches for interesting relationships among items in a given database. There are three primary quality measures for association rule, support and confidence and lift. In order to improve the efficiency of existing mining algorithms, constraints were applied during the mining process to generate only those association rules that are interesting to users instead of all the association rules. When we create relation rule, we can often find a lot of rules. This can find rule that direct relativity by intervening variable does not exist. In this study we try to discovery an insignificant rule in association rules by intervening variable. Result of this study can understand relativity about rule that is created in relation rule more exactly.

A study of association rule by considering the frequency (발생빈도를 고려한 연관성분석 연구)

  • Lim, Je-Soon;Lee, Kyeong-Jun;Cho, Young-Seuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1061-1069
    • /
    • 2010
  • In data mining, association rule is a popular and well researched method for discovering interesting relations between variables. There are three measures for association rule, support, confidence and lift. But there are some problem in them. They don't consider the frequency of variable in case. So, we need the new association rule which consider the frequency.In this paper, we proposed the new association rule. We compared the proposed association rule with the original association rule from example data. As a result, we knew our function was better than the original function in terms of sensitivity.

소비자 구매행동 예측을 위한 이질적인 모형들의 통합

  • Bae, Jae-Gwon;Kim, Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.489-498
    • /
    • 2007
  • For better predictions and classifications in customer recommendation, this study proposes an integrative model that efficiently combines the currently-in-use statistical and artificial intelligence models. In particular, by integrating the models such as Association Rule, Frequency Matrix, and Rule Induction, this study suggests an integrative prediction model. The data set for the tests is collected from a convenience store G, which is the number one in its brand in S. Korea. This data set contains sales information on customer transactions from September 1, 2005 to December 7, 2005. About 1,000 transactions are selected for a specific item. Using this data set, it suggests an integrated model predicting whether a customer buys or not buys a specific product for target marketing strategy. The performance of integrated model is compared with that of other models. The results from the experiments show that the performance of integrated model is superior to that of all other models such as Association Rule, Frequency Matrix, and Rule Induction.

  • PDF

Recommender System using Association Rule and Collaborative Filtering (연관 규칙과 협력적 여과 방식을 이용한 추천 시스템)

  • 이기현;고병진;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.91-103
    • /
    • 2002
  • A collaborative filtering which supports personalized services of users has been common use in existing web sites for increasing the satisfaction of users. A collaborative filtering is demanded that items are estimated more than specified number. Besides, it tends to ignore information of other users as recommending them on the basis of information of partial users who have similar inclination. However, there are valuable hidden information into other users' one. In this paper, we use Association Rule, which is common wide use in Data Mining, with collaborative filtering for the purpose of discovering those information. In addition, this paper proved that Association Rule applied to Recommender System has a effects to recommend users by the relation between groups. In other words, Association Rule based on the history of all users is derived from. and the efficiency of Recommender System is improved by using Association Rule with collaborative filtering.

  • PDF

A Study for Antecedent Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1077-1083
    • /
    • 2006
  • Association rule mining searches for interesting relationships among items in a given database. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. In this paper we present association rule mining based antecedent variables. We call these rules to antecedent association rules. An antecedent variable is a variable that occurs before the independent variable and the dependent variable.

  • PDF

Discovery of Association Rules Using Latent Variables

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.177-188
    • /
    • 2005
  • Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary threshold measures in association rule; support and confidence and lift. In the case of appling real world to association rules, we have some difficulties in data interpretation because we obtain many rules. In this paper, we develop the model of association rules using latent variables for environmental survey data.

  • PDF

Discovery of Association Rules Using Latent Variables

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.149-160
    • /
    • 2006
  • Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary threshold measures in association rule; support and confidence and lift. In the case of appling real world to association rules, we have some difficulties in data interpretation because we obtain many rules. In this paper, we develop the model of association rules using latent variables for environmental survey data.

  • PDF

A Study of Parallel Reservoir Integrated Operation considering Storage (저류량을 고려한 병렬저수지 연계운영)

  • Park, Ki-Bum;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1176-1181
    • /
    • 2006
  • The purpose of this study was to estimate water supply analysis and reliability indicators by using allocation rule(AR) about Andong Dam and Imha Dam which have parallel reservoirs system. According to the analysis results of allocation rule, for Rule(A) and Rule(B), the contribution of water supply in Andong Dam was 60% more than in Imha Dam, and for Rule(C), the contributions in Andong Dam and Imha Dam were almost equal. In Rule(C), supply is allocated by the ratio which divides the sum of storage and inflow by the mean storage according to the storage state and supply capability state of Andong Dam and Imha Dam. This Rule(C) showed good results in the water supply capability analysis and reliability analysis of parallel reservoirs. In the analysis criteria of water supply in parallel reservoirs system, monthly water change quantity showed better results than monthly constant water quantity in water supply analysis. On the basis of this study, the new technique for water supply analysis was developed to be applied to parallel reservoirs, and this operation rule will establish the efficient operation measures in the application to several kinds of parallel reservoirs system.

  • PDF