• Title/Summary/Keyword: associated prime

Search Result 131, Processing Time 0.02 seconds

ASSOCIATED PRIME IDEALS OF A PRINCIPAL IDEAL

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.8 no.1
    • /
    • pp.87-90
    • /
    • 2000
  • Let R be an integral domain with identity. We show that each associated prime ideal of a principal ideal in R[X] has height one if and only if each associated prime ideal of a principal ideal in R has height one and R is an S-domain.

  • PDF

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

On Prime Near-rings with Generalized (σ,τ)-derivations

  • Golbasi, Oznur
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.249-254
    • /
    • 2005
  • Let N be a prime left near-ring with multiplicative center Z and f be a generalized $({\sigma},{\tau})-derivation$ associated with d. We prove commutativity theorems in prime near- rings with generalized $({\sigma},{\tau})-derivation$.

  • PDF

Generalized Derivations on ∗-prime Rings

  • Ashraf, Mohammad;Jamal, Malik Rashid
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.481-488
    • /
    • 2018
  • Let I be a ${\ast}$-ideal on a 2-torsion free ${\ast}$-prime ring and $F:R{\rightarrow}R$ a generalized derivation with an associated derivation $d:R{\rightarrow}R$. The aim of this paper is to explore the condition under which generalized derivation F becomes a left centralizer i.e., associated derivation d becomes a trivial map (i.e., zero map) on R.

A TORSION GRAPH DETERMINED BY EQUIVALENCE CLASSES OF TORSION ELEMENTS AND ASSOCIATED PRIME IDEALS

  • Reza Nekooei;Zahra Pourshafiey
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.797-811
    • /
    • 2024
  • In this paper, we define the torsion graph determined by equivalence classes of torsion elements and denote it by AE(M). The vertex set of AE(M) is the set of equivalence classes {[x] | x ∈ T(M)*}, where two torsion elements x, y ∈ T(M)* are equivalent if ann(x) = ann(y). Also, two distinct classes [x] and [y] are adjacent in AE(M), provided that ann(x)ann(y)M = 0. We shall prove that for every torsion finitely generated module M over a Dedekind domain R, a vertex of AE(M) has degree two if and only if it is an associated prime of M.

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

A Reinvestigation on Key Issues Associated with the Yimjin(1712) Boundary Making and Demarcation: The Distribution of Soil Piles and the Location of 'Suchul(水出)' written on the Mukedeng's Map (임진정계 경계표지 토퇴의 분포와 목극등 지도에 표시된 '수출(水出)'의 위치)

  • Lee, Kang-Won
    • Journal of the Korean Geographical Society
    • /
    • v.52 no.1
    • /
    • pp.73-103
    • /
    • 2017
  • This paper reports the distribution of soil piles set up during the Yimjin(1712) Boundary Making and Demarcation(YBMD). Through the survey on the distribution of soil piles the location of 'Suchul'(水出: seepage zone) could be identified. The endpoint soil pile set up on the east-south bank of Heishigou(黑石溝) stream locates on $42^{\circ}04^{\prime}20.09^{{\prime}{\prime}}N$, $128^{\circ}16^{\prime}08.42^{{\prime}{\prime}}E$. The west beginning point of soil piles distributed in the south side of Tuhexian road locates on $42^{\circ}02^{\prime}20.14^{{\prime}{\prime}}N$, $128^{\circ}18^{\prime}53.40^{{\prime}{\prime}}E$. And the east endpoint of them locates $42^{\circ}01^{\prime}32.97^{{\prime}{\prime}}N$, $128^{\circ}21^{\prime}24.59^{{\prime}{\prime}}E$. From the west beginning point to the soil pile located in 2.1km distance from the beginning point, the distribution direction is west-east. The direction of soil piles after them is northwest-southeast. The total real length of soil piles distributed in the south side of Tuhexian(圖和線) road is about 4.2km more or less. The location of 'Suchul' written on the Mukedeng's map locates on $42^{\circ}01^{\prime}30.36^{{\prime}{\prime}}N$, $128^{\circ}21^{\prime}3.62^{{\prime}{\prime}}E$, The point locates in southeastward 222m distance from the soil piles endpoint of the south side of Tuhexian road. In reference of these reports this paper develops some reinterpretation on the YBMD.

  • PDF

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

ORTHOGONAL GENERALIZED SYMMETRIC REVERSE BIDERIVATIONS IN SEMI PRIME RINGS

  • V.S.V. KRISHNA MURTY;C. JAYA SUBBA REDDY
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.3_4
    • /
    • pp.155-165
    • /
    • 2024
  • Let R be a semi-prime ring. Let [δ1, D1] and [δ2, D2] be two generalized symmetric reverse biderivations of R with associated reverse biderivations D1 and D2. The main aim of the present paper is to establish conditions of orthogonality for symmetric reverse biderivations and symmetric generalized reverse biderivations in R.