• Title/Summary/Keyword: assessment of codes

Search Result 261, Processing Time 0.028 seconds

Study on the improvement of the performance criteria for the Window Insect Screens (창호용 방충망의 성능기준 개선 방안)

  • Yeo, In-Hwan;Ok, Chi-Yeol;An, Jae-Hong;In, Ki-Ho;Min, Byung-Yeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05c
    • /
    • pp.61-64
    • /
    • 2009
  • The number of apartment houses has accounted for more than 50% of all domestic residential types in Korea since 1980s. However, the apartment house has environmentally disadvantageous conditions such as highly residential-density and potential falls by children aged seven years and under through windows. In this study, we aim to suggest some ideas to improve domestic performance assessment methods and criteria of window Insect screens for protection on security and fall prevention by analyzing domestic standard with several overseas codes related to the screens for windows.

  • PDF

3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant (원전 주요기기의 3차원 피로수명 평가)

  • Ahn, Min-Yong;Bae, Sung-Ryul;Park, Young-Jae;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

A new method to calculate a standard set of finite cloud dose correction factors for the level 3 probabilistic safety assessment of nuclear power plants

  • Gee Man Lee;Woo Sik Jung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1225-1233
    • /
    • 2024
  • Level 3 probabilistic safety assessment (PSA) is performed to calculate radionuclide concentrations and exposure dose resulting from nuclear power plant accidents. To calculate the external exposure dose from the released radioactive materials, the radionuclide concentrations are multiplied by two factors of dose coefficient and a finite cloud dose correction factor (FCDCF), and the obtained values are summed. This indicates that a standard set of FCDCFs is required for external exposure dose calculations. To calculate a standard set of FCDCFs, the effective distance from the release point to the receptor along the wind direction should be predetermined. The TID-24190 document published in 1968 provides equations to calculate FCDCFs and the resultant standard set of FCDCFs. However, it does not provide any explanation on the effective distance required to calculate the standard set of FCDCFs. In 2021, Sandia National Laboratories (SNLs) proposed a method to predetermine finite effective distances depending on the atmospheric stability classes A to F, which results in six standard sets of FCDCFs. Meanwhile, independently of the SNLs, the authors of this paper discovered that an infinite effective distance assumption is a very reasonable approach to calculate one standard set of FCDCFs, and they implemented it into the multi-unit radiological consequence calculator (MURCC) code, which is a post-processor of the level 3 PSA codes. This paper calculates and compares short- and long-range FCDCFs calculated using the TID-24190, SNLs method, and MURCC method, and explains the strength of the MURCC method over the SNLs method. Although six standard sets of FCDCFs are required by the SNLs method, one standard sets of FCDCFs are sufficient by the MURCC method. Additionally, the use of the MURCC method and its resultant FCDCFs for level 3 PSA was strongly recommended.

Site Calibration for the Wind Turbine Performance Evaluation (풍력발전기 성능실증을 위한 단지교정 방법)

  • Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jung-Wan
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.49-57
    • /
    • 2002
  • The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several methods on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the Taekwanryung test site are presented using a one-month wind data from a reference meteorological mast and a temporal mast installed at the site of wind turbine. From this analysis, it turns out that the current location of the reference meteorological mast is wrongly determined, and the self-developed codes for the site calibration are working properly. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed.

  • PDF

Development of Fitness for Service Evaluation Programs (기간설비 사용적합성 평가 프로그램 개발)

  • Park, Young-Jae;Yun, Kang-Ok;Chang, Yoon-Suk;Kim, Young-Jin;Cho, Kyung-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.160-165
    • /
    • 2004
  • An effective integrity evaluation system is essential to manage the fitness for service issues on infra-structure because the evaluation processes usually take long times and are detrimental for productivity point of view. In this paper, the key structures and procedures of four integrity evaluation programs which have been developed based on currently available codes and standards are described. The proposed programs are not only flexible to adopt advances in fitness for purpose type assessment methodologies but also convenient for field engineers. The developed programs which will be unified as an integrity evaluation system are expected to play a prominent role for integrity evaluation of major infra-structure.

  • PDF

Study on Volumetric Accuracy of a CMM using step guage measurement (스텝게이지를 이용한 3차원 측정기의 입체오차 측정에 관한 연구)

  • 박희재;문준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.312-318
    • /
    • 1993
  • This paper presents an useful technique for error assessment of CMM with simple gauges such as step gauge. A computer module for measurement path generation is implemented,where the appropriate measurement sequences are generated in terms of DMIS file format for CMMs of CNC mode. After the CNC codes are downloaded into CMMs, the measurement operations are performed, and the error analysis are followed. Positional errors, angular errors are successfully measured with high precision along the 3 axis in relatively short time. The squareness error is also assessed with the step gauge measurement data. The developed system has been practically applied, and showed good performance.

  • PDF

Variations in the Hospital Standardized Mortality Ratios in Korea

  • Lee, Eun-Jung;Hwang, Soo-Hee;Lee, Jung-A;Kim, Yoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.4
    • /
    • pp.206-215
    • /
    • 2014
  • Objectives: The hospital standardized mortality ratio (HSMR) has been widely used because it allows for robust risk adjustment using administrative data and is important for improving the quality of patient care. Methods: All inpatients discharged from hospitals with more than 700 beds (66 hospitals) in 2008 were eligible for inclusion. Using the claims data, 29 most responsible diagnosis (MRDx), accounting for 80% of all inpatient deaths among these hospitals, were identified, and inpatients with those MRDx were selected. The final study population included 703 571 inpatients including 27 718 (3.9% of all inpatients) in-hospital deaths. Using logistic regression, risk-adjusted models for predicting in-hospital mortality were created for each MRDx. The HSMR of individual hospitals was calculated for each MRDx using the model coefficients. The models included age, gender, income level, urgency of admission, diagnosis codes, disease-specific risk factors, and comorbidities. The Elixhauser comorbidity index was used to adjust for comorbidities. Results: For 26 out of 29 MRDx, the c-statistics of these mortality prediction models were higher than 0.8 indicating excellent discriminative power. The HSMR greatly varied across hospitals and disease groups. The academic status of the hospital was the only factor significantly associated with the HSMR. Conclusions: We found a large variation in HSMR among hospitals; therefore, efforts to reduce these variations including continuous monitoring and regular disclosure of the HSMR are required.

Uncertainty quantification and propagation with probability boxes

  • Duran-Vinuesa, L.;Cuervo, D.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2523-2533
    • /
    • 2021
  • In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for licensing purposes by the most important regulator bodies, different uncertainty assessment methods have become popular, overall non-parametric methods. While non-parametric tolerance regions can be well stated and used in uncertainty quantification for licensing purposes, the propagation of the uncertainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of uncertainty than the one provided by the tolerance regions or a probability distribution. An alternative method based on the parametric or distributional probability boxes is used to perform uncertainty quantification and propagation regarding statistic uncertainty from one code to another. This method is sample-size independent and allows well-defined tolerance intervals for uncertainty quantification, manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on uncertainty quantification and uncertainty propagation through nested random sampling.

Effects of different anesthetic techniques on the incidence of phantom limb pain after limb amputation: a population-based retrospective cohort study

  • Cho, Hyun-Seok;Kim, Sooyoung;Kim, Chan Sik;Kim, Ye-Jee;Lee, Jong-Hyuk;Leem, Jeong-Gill
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.267-274
    • /
    • 2020
  • Background: General anesthesia (GA) has been considered the anesthetic technique which most frequent leads to phantom limb pain (PLP) after a limb amputation. However, these prior reports were limited by small sample sizes. The aims of this study were to evaluate the incidence of PLP according to the various anesthetic techniques used for limb amputation and also to compare the occurrence of PLP according to amputation etiology using the Korean Health Insurance Review and Assessment Service for large-scale demographic information. Methods: The claims of patients who underwent limb amputation were reviewed by analyzing the codes used to classify standardized medical behaviors. The patients were categorized into three groups-GA, neuraxial anesthesia (NA), and peripheral nerve block (PNB)-in accordance with the anesthetic technique. The recorded diagnosis was confirmed using the diagnostic codes for PLP registered within one year after the limb amputation. Results: Finally, 7,613 individuals were analyzed. According to the recorded diagnoses, 362 patients (4.8%) developed PLP after amputation. Among the 2,992 patients exposed to GA, 191 (6.4%) were diagnosed with PLP, whereas 121 (4.3%) of the 2,840 patients anesthetized with NA, and 50 (2.8%) of the 1,781 patients anesthetized under PNB developed PLP. The relative risks were 0.67 (95% confidence interval [CI], 0.53-0.84; P < 0.001) for NA and 0.43 (95% CI, 0.32-0.59; P < 0.001) for PNB. Conclusions: In this retrospective cohort study, using large-scale population-based databases, the incidence rates of PLP after limb amputations were, in the order of frequency, GA, NA, and PNB.