• Title/Summary/Keyword: assembly performance evaluation

Search Result 157, Processing Time 0.027 seconds

A Methodological Quality Evaluation of Nursing Cost Analysis Research based on Activity-based Costing in Korea (활동기준원가계산(Activity-Based Costing; ABC) 기반 간호원가분석 연구의 방법론적 질 평가)

  • Lim, Ji-Young;Noh, Wonjung;Mo, Jin-A
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.279-290
    • /
    • 2016
  • This study was performed to evaluate the methodological quality of nursing costs analysis research based on the activity-based costing in Korea. Data were collected from database of Research Information Shraing Service, Korean studies Information Service System, DBpia and National Assembly Library. Eight studies were published on thesis and journal until Oct, 2015. Quality assessment tool was consisted in 5 factors based on activity-based costing. Studies of 87.5% were calculate the nursing units' costs in the hospital. All papers were appropriate in labor costs in resource factor and activity factor, but only 2 paper was appropriate in overhead cost allocation. Through this result, we found the necessity of improving accuracy in nursing costs analysis. These results can be helpful to manage cost and performance in nursing practice.

The Effectiveness of Simulation Training in an Advanced Trauma Life Support Program for General Surgery Residents: A Pilot Study

  • Kim, Myoung Jun;Lee, Jae Gil;Lee, Seung Hwan
    • Journal of Trauma and Injury
    • /
    • v.33 no.4
    • /
    • pp.219-226
    • /
    • 2020
  • Purpose: Although the Advanced Trauma Life Support (ATLS) course is now taught internationally, it has not been implemented in Korea. In recent years, interest has increased in simulation as a teaching tool in the ATLS course. We therefore hypothesized that simulation training would be a useful adjunct to the ATLS course. Methods: We designed a 1-day curriculum that included skill development workstations, expert lectures, trauma patient simulations, and group discussion for general surgery residents. We conducted a survey to evaluate participants' level of understanding of the initial evaluation and treatment of trauma patients, their degree of knowledge and technical improvement, their satisfaction with the learning goals, and their overall satisfaction with the curriculum. We then analyzed the effects before and after the training. Results: Nine residents attended this course. None of the residents initially reported that they could perform a primary survey of trauma patients. The analysis revealed significant improvements after training in the questionnaire areas of "assembly of the team and preparation for resuscitation of a trauma patient" (p=0.008), "performance of a primary survey for trauma patients" (p=0.007), "resuscitative procedures for trauma patients" (p=0.008), "importance of re-evaluation" (p=0.007), "identifying the pitfalls associated with the initial assessment and management" (p=0.007), and "importance of teamwork" (p=0.007). Conclusions: After the ATLS simulation training, all participants showed significant improvements in their understanding of how to manage multiple trauma patients. Therefore, ATLS simulation training for residents will help in the management of trauma patients.

Study on Electromagnetic Testing for Surface-to-Air Missile system and Method for Test Complementation (대공유도무기체계의 전자기 시험 고찰 및 시험 보완 방법)

  • Young-jae Kim;Sang-hoon Koh;Dong-hyun Park;Seok-choo Han;Dae-hyun Lee;Jeong-woo An
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.456-463
    • /
    • 2022
  • The SAM(Surface-to-Air Missile) systems will be operated until disposing of it after production, the necessary test and evaluation should be performed during the development stage to ensure the operational performance after deployment. As development of technologies related to the electromagnetic wave field of missile system is required, so the verification of the electromagnetic environment has become more important. Therefore it is necessary to carefully review whether there are any weaknesses through the analysis of the SAM system when establishing the test and evaluation procedure. This paper describes the general electromagnetic test procedure for SAM system and discusses the matters that need to be supplemented. Also, methods for supplementation and review results were written.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

Development of accuracy for the statical inclinometer by error analysis (다축 수준기의 오차분석을 통한 측정 정밀도 향상)

  • Lee J.K.;Park J.J.;Cho N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1797-1802
    • /
    • 2005
  • In this study, we were developed an accuracy of the proposed two dimensional statical inclinometer what used a position sensitive detector(PSD) by an error analysis. The inclinometer consists of a laser source, a mass, an optic-fiber, and a PSD. The gravity direction on a base platform of the inclinometer is changed by an unknown inclination angle. And a laser spot is moved from the origin to another position of a PSD following a variation of an optical path by the gravity. These processes enable the inclinometer to estimate the inclination angle from distance information of the moving spot. A design methodology on the basis of a sensitivity analysis was applied to improve the measurement performance such as a full measuring range and a resolution. But it still has error factors, so we analyze the uncertainty of the inclinometer to evaluate the systematic errors from alignments, assembly error and so on. The experimental performance evaluation about the design objectives as a measuring range and a resolution was performed. And the validity and the feasibility of the design process were certified by an experimental process. Systematic errors eliminated to improve the accuracy of the inclinometer by the corrected measuring model from the calibration process between the inclination angle and the PSD position instead of the nominal measuring model. The ANOVA(analysis of variance) confirmed the effect of eliminating the systematic errors in the inclinometer. From these methodologies, the proposed inclinometer was able to measure with a high resolution(35.14sec) and a wide range(from $-15^{\circ}\;to\;15^{\circ}$

  • PDF

Development and Implementation of a Skill Transfer System for a Self-Tapping Screw-Tightening Operation

  • Matsumoto, Toshiyuki;Doyo, Daisuke;Shida, Keisuke;Kanazawa, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Self-tapping screws have some operational peculiarities. In spite of their economical advantage that requires no prior tapping operation, a weakness of self-tapping screw-tightening operations is that screws can easily be tightened at a non-right angle, thus resulting in an improper tightening strength. Increases in outsourced workers have reduced labor costs, but the accompanying high worker fluidity means that new workers are more frequently introduced into factories. It is necessary to train new workers for self-tapping screw-tightening operations, which occupies a considerable portion of ordinary assembly works. The purpose of this study is to develop and implement a skill transfer system for the operation. This study (1) proposes a set of characteristic values for evaluating the quality of the operation and develops a device that can measure these values; (2) proposes criteria for evaluating the resultant quality of the tightening; and (3) develops a skill training system for better work performance. Firstly, sets of characteristic values for evaluating the quality of the operation, namely, torque, vertical pressure forces and horizontal vibration forces, are proposed. A device that can measure these values is developed. Secondly, criteria for evaluating the resultant quality of the tightening are identified, involving tightening torque, maximum vertical pressure and timing, vibration area during the processing and tightening period, and work angle. By using such parameters, workers with the proper aptitude can be identified. Thirdly, a skill training system for the operation is developed. It consists of screwdriver operation training and screw-tightening training with feedback information about the results of the operation. Finally, the validity of the training system is experimentally verified using new operators and actual workers.

Evaluation of 2 Part Curtainwall Structural Silicone Sealant (커튼월용 2액형 구조용 실란트 혼합비별 물성 평가 연구)

  • Kim, Sung Hyun;Jung, Jin-young;Ahn, Myung-Su;Seo, YeonWon;Bae, Keesun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.78-80
    • /
    • 2014
  • Silicone structural glazing (SSG) is a method utilizing a silicone adhesive to attach glass, metal, or other panel material to the structure of a building. Windload and other impact loads on the facade are transferred from the glass or panel through the silicone structural sealant to the systems' framework. Silicone structural glazing systems are currently a very common method of glazing throughout the world. Locally, structural silicone glazing has become very common to achieve aesthetically pleasing and high utilization of small land for both residential and commercial building. Although structural silicone glazing has been utilized for approximately thirty years in Korea, the understanding of its technology was low and limited. Consequently, Korean projects experienced many quality issues during assembly and construction, even in very recently finished buildings. Adhesion loss and water infiltration occurred on more than one project, and the time and cost to repair these issues were substantial. In general, there are two kinds of structural silicones depending on fabrication methods. 1part structural silicone is for site glazing system and 2part structural silicone is for unitized factory glazing system. In this paper, 2part structural silicone which is very common for factory fabricating curtainwall systems was evaluated with regards to various mixing ratio. Since the structural performance of 2part sealant can be affected by mixing ratios, some extra ranges of recommended mixing ratio were evaluated to see any performance differences. Besides on cure profile, comparative evaluations for mechanical properties and adhesion develop on common building substrates were conducted.

  • PDF

A Study on the Design and Implementation of Simulated Signal Generator for VHF Radar with High Interference and Immunity Characteristics (간섭신호 내성 및 격리도 특성이 우수한 초단파 레이다용 모의신호 발생장치의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Lee, Sung-Je;Jang, Youn-Hui
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • This study describes the design and implementation of a simulated signal generator to demonstrate the performance of VHF band radar for the detection of small targets in RCS(Radar Cross Section). The transmission and reception antenna beam widths used in the simulated signal generating apparatus may be large, which may cause problems in the degree of isolation. Interference signal immunity and isolation characteristics are improved by considering operating conditions of VHF radar to solve isolation of antennas. Simulated signal generator performs the following: VHF radar transmission and reception correction, simulation signal generation, target Doppler, RCS and distance simulation, remote control, and GPS clock synchronization function. After the fabrication of the simulated signal generator, the main characteristics, such as the output characteristics and the reflection signal simulations, were tested. When the microwave radar assembly is completed in the future, it will be utilized for the performance evaluation of VHF radar.

Evaluation of Cell Components in Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 구성요소 평가에 대한 연구)

  • Jung, Won Suk;Yoon, Sung Pil;Han, Jonghee;Nam, Suk Woo;Lim, Tae-Hoon;Oh, In-Hwan;Hong, Seong-Ahn
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.362-367
    • /
    • 2009
  • Recently, the use of formic acid as a fuel for direct liquid fuel cells has emerged as a promising alternative to methanol. In the work presented herein, we evaluated direct formic acid fuel cells(DFAFCs) with various components under operating conditions, for example, the thickness of the proton exchange membrane, concentration of formic acid, gas diffusion layer, and commercial catalyst. The thickness of the proton exchange membrane influenced performance related to the fuel cross-over. To optimize the cell performance, we investigated on the proper concentration of formic acid and catalyst for the formic acid oxidation. Consequently, membrance-electrode assembly(MEA) consisted of $Nafion^{(R)}$-115 and the Pt-Ru black as a anode catalyst showed the maximum performance. This performance was superior to the DMFCs' one.

Cognitive Development Evaluation of Haptic Puzzle Game Using a Haptic Pen (촉각펜을 이용한 햅틱 퍼즐게임의 인지 발달 평가)

  • Chung, Dong-Hun
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.45-56
    • /
    • 2009
  • It is necessary for young children to integrate the sense of sight, hearing, touch, etc. for developing their emotion and cognition. Thanks to Information and Communication Technology (ICT) development, young children have more opportunities to use various senses in learning process. However, ICT learning method is more focusing on the sense of sight and hearing, and lacks of integrated recognition and this fact leads to the reason why ICT can not be used as a main education tool. Therefore, this study evaluated the influence of wUbi-Pen(haptic device) on cognition using a computer puzzle program. The results show that young children using a haptic pen have greater intention and performance in object assembly, mazes, picture completion in K-WPPSI test than those of non-using haptic pen. This implies that haptic function should be considered in ICT material and indeed useful in various cognition-related symptoms and diseases.

  • PDF