• Title/Summary/Keyword: asbestos containing buildings

Search Result 14, Processing Time 0.03 seconds

An Asbestos Risk Assessment and Areal Distribution of Asbestos Containing Materials in Public Buildings (석면함유 공공 건축물의 위해성 평가 및 면적 분포 특성)

  • Song, Su-Jin;Jang, Bong-Ki;Jo, Bong-Hyun;Kim, Yeong-Ji;Heo, Eun-Hyeop;Lee, Joung-Dae;Son, Bu-Soon;Lee, Jong-Wha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.267-276
    • /
    • 2016
  • Objectives: This study, aims to examine the distribution characteristics of asbestos-containing building materials; risk assessment and area of distribution of asbestos-containing building materials depending on year of construction; building materials; types of building materials; and usage in public buildings in order to create fundamental data for safe management of public buildings. Methods: The asbestos investigation was conducted by an asbestos research institution from March to May 2014, targeting 41 public buildings which were subject to asbestos investigation in South Chungcheong-do Province. With respect to 381 presumed asbestos-containing materials, an investigation was conducted into whether they contained asbestos, asbestos type, content, year of construction, and use in the building were examined, and a risk assessment was performed. Results: Asbestos-containing building materials were used in 35 buildings(85.4%). Among them, 31(88.6%) were public buildings. Asbestos was detected in 73% of 381 suspected asbestos-containing materials, which were mostly ceiling materials (85.2%). The older the buildings, the more they showed a tendency to have a significantly higher risk assessment score. The ratio of average area with asbestos-containing building materials to total floor area was 57.6%, 44.1%, and 17.8% for buildings built in the 1980s, 1990s, and 2000s, respectively. This showed a tendency to be significantly higher with the age of the building. Conclusions: From the results above, it can be concluded that with the age of the buildings, the risk assessment score and the ratio of average area with asbestos-containing building materials to total floor area became significantly higher. Given the concern about the exposure to asbestos of residents and civil petitioners, safety management of older public buildings and measures for dismantling and removal of asbestos-containing building materials should therefore be urgently established.

A study on the survey and reduction of indoor asbestos concentration (실내의 석면농도 실태 조사 및 저감에 관한 연구)

  • Seo, Byong-Won;Lee, Ju-Hwa;Park, Jihoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.325-337
    • /
    • 2014
  • The research on the actual condition of indoor asbestos concentration in Korea has not been thoroughly accomplished up to now. In this research the ratio of asbestos-containing buildings and indoor asbestos concentration was studied. This investigation was conducted in 2012 and 2013 and buildings were categorized based on region, building type by use, existing space(ground or basement), and construction year, respectively. Also the indoor asbestos concentration change was monitored to evaluation the efficiencies of two types of asbestos-concentration abatement devices. As a result, the ratio of asbestos-containing buildings in Seoul was largely decreased. The ratio of asbestos-containing buildings was higher in hospitals and schools regionally and in ground buildings than in basement. The average indoor asbestos concentrations were 0.0011, 0.0008 piece/cc in 2012 and 2013 investigation, respectively. Those values were much lower than standards(0.01 piece/cc), therefore the threat of indoor asbestos concentration might be negligible. In asbestos-concentration abatement experiments, the circulation velocity of ventilator were changed 2-6.7 m/sec. With 6.7 m/sec of velocity of ventilator, the concentration of indoor asbestos was fluctuated and maximum value was 2.4 piece/cc. With 4.5 and 2 m/sec of velocities of ventilator, the maximum concentration of indoor asbestos was fluctuated and maximum value was 0.9 piece/cc. This indicated that the concentration of indoor asbestos was decreased partly due to the free drop of asbestos. From these results, the proper velocity of ventilator seems to be between 4.7 and 6.5m/sec under this circumstance and further research is required. These research results may be used to guideline of asbestos management policy.

Investigation and Risk Assessment of Asbestos-Containing Materials used in Buildings (건축물에 사용된 석면함유물질(ACMs)의 조사 및 위해성 평가)

  • Kim, Hong-Kwan;Chon, Young Woo;Roh, Young Man;Hong, Seung-Han;Kim, Chi-Nyon;Lee, Ik-Mo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • Objectives: The objectives of this study are to research the usage characteristics of asbestos-containing building materials and to conduct exposure risk assessment by applying no. 2016-230 "Methods of Risk Assessment of Asbestos-Containing Buildings" from the Ministry of Environment. Methods: One hundred buildings located in the Seoul and Gyeonggi-Incheon area were chosen, with 29 in Seoul, 20 in Incheon, and 51 in Gyeonggi-do Province. The year of construction was divided between three buildings in the 1970s, 11 buildings in the 1980s, 42 buildings in the 1990s, and 44 buildings in the 2000s. The bulk samples were analyzed by using a polarizing microscope after a pre-process using a stereomicroscope in a hood with an HEPA filter. This study defined ACMs(asbestos-containing materials) as asbestos when the content percentage was over 1% in the analysis result. Methods and standards of risk assessment of asbestos-containing building materials were conducted by refering to no. 2016-230 "Method of Risk Assessment of Asbestos-Containing Buildings" from the Ministry of Environment. The risk of exposure to ACMs was rated by a score based on three categories(high, middle, low risk of asbestos exposure). Results: In this study, 30 of the 100 buildings and 36 of the 416 bulk samples(8.6%) were found to have had asbestos. Asbestos was detected at a high rate, in 18 out of 42, in buildings constructed in the 1990s and at the lowest rate(7 out of 44) for buildings constructed in the 2000s. As a result of the evaluation according to no. 2016-230 "Method of Risk Assessment of Asbestos-Containing Buildings" of the Ministry of Environment, the risk assessment level of two asbestos-containing building materials was found to be "Medium", and 28 buildings materials were found to be at the "Low" level. Conclusion: As asbestos is regulated by the government, it is required to conduct active management and implemention by introducing methods of risk assessment of asbestos exposure that are supported by data from various situations. In the case of buildings owned by individuals, building owners should be aware of the risk of exposure to asbestos.

Asbestos Exposure and Health Risk Assessment in Asbestos-Containing Buildings (석면함유 건축물의 석면 노출 및 위해성 평가)

  • Jeong, Jae-Won;Kim, Kwang-Su;Cho, Sun-Ja;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1069-1078
    • /
    • 2012
  • This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cacer risks(ELCRs) in asbestos-containing buildings for maintenance and management. The range of airborne asbestos concentration of 33 buildings was 0.0018 ~ 0.0126 f/cc and one site exceeded indoor air-quality recommended limit 0.01 f/cc. And ELCRs based on US EPA IRIS(Integrated risk information system) model are 1.5E-06 ~ 3.9E-05 levels, and there was no site showed 1.0E-04 (one person per million) level or more, and 11 sites showed 1.0E-05 (one person per 100,000 people) level or more. To prevent the release of asbestos fibers, it needs operation and maintenance of asbestos-containing building materials, and there are some methods such as removal, repairment, enclosure and encapsulation. In conclusion, a risk-based air action level for asbestos in air is an appropriate metric for asbestos-containing building management.

A Study on the Efficient Measurement of Airborne Asbestos Concentrations at Demolition Sites of Asbestos Containing Buildings, etc. in Seoul (서울시내 석면함유 건축물 철거 현장 등에서의 효과적인 공기 중 석면농도 측정을 위한 연구)

  • Lee, Jinhyo;Lee, Suhyun;Kim, Jeongyeun;Kim, Jihui;Chung, Sooknye;Kim, Jina;Oh, Seokryul;Kim, Iksoo;Shin, Jinho;Eo, Soomi;Jung, Kweon;Lee, Jinsook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.113-121
    • /
    • 2014
  • Objectives: This study is intended to seek credible and efficient measurements on airborne asbestos concentrations that allow immediate action by establishing complementary data through comparative analysis with existing PCM and KF-100 method real-time monitoring equipment in working areas in Seoul where asbestos-containing buildings are being demolished, including living environment surroundings. Materials: We measured airborne asbestos concentrations using PCM and KF-100 at research institutes, monitoring networks, subway stations and demolition sites of asbestos-containing buildings. Through this measurement data and KF-100 performance testing, we drew a conversion factor and applied it via KF-100. Finally we verified the relationship between PCM and KF-100 with statistical methods. Results: The airborne asbestos concentrations by PCM for the objects of study were less than the detection limit(7 fiber/$mm^2$) in three (20%) out of 15 samples. The highest concentration was 0.009 f/cc. The airborne asbestos concentrations by PCM in laboratories, monitoring networks, subway stations and demolition sites of asbestos-containing buildings were respectively $0.002{\pm}0.000$ f/cc, $0.004{\pm}0.001$ f/cc, $0.009{\pm}0.001$ f/cc, and $0.002{\pm}0.000$ f/cc. As a result of KF-100 performance testson rooftops, the conversion factor was 0.1958. Applying the conversion factor to KF-100 for laboratories, the airborne asbestos concentrations ratio of the two ways was nearly 1:1.5($R^2$=0.8852). Also,the airborne asbestos concentration ratio of the two ways was nearly 1:1($R^2$=0.9071) for monitoring networks, subway stations, and demolition sites of asbestos-containing buildings. As a result of independent sample t-tests, there was no distinction between airborne asbestos concentrations monitored in the two ways. Conclusions: In working areas where asbestos-containing buildings are being demolished, including living environment surroundings, quickly and accurately monitoring airborne asbestos scattered in the air around the working area is highly important. For this, we believea mutual interface of existing PCM and a real-time monitoring equipment method is possible.

Estimation of Factors Influencing Airborne Fiber Concentrations through an Observation Survey of Asbestos-containing Materials in Buildings (석면함유 건축물의 관찰조사를 통한 실내공기 중 섬유 농도 변화 요인 추정)

  • Lee, Seungchul;Kim, Boowook;Yi, Gwang Yong;Shin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.174-183
    • /
    • 2015
  • Objectives: The objective of this study is the estimation of factors influencing airborne fiber concentrations by means of an observation survey of asbestos-containing materials in buildings. Methods: Forty-five samples were collected from four commercial buildings by NIOSH Method 7400 and classified according to current condition, potential activity, construction year, and operations and maintenance(O&M). Results: Airborne fiber concentrations by current condition(classified as good, fair and poor) were significantly different(p<0.05). Concentrations by potential activity were significantly different among groups(p<0.05), and those from the low activity group were higher than those from the middle activity group. Based on construction year, airborne fiber concentrations from the decade of the 1990's were higher than those from the 1960's. When O&M status was considered, airborne fiber concentrations from 1960's buildings were lower than those buildings not operated and maintained(p<0.01), because dust generation was influenced by O&M status. It was found that airborne fiber concentrations were related to current condition and potential activity via regression analysis, but the coefficient of determination was low. Also, correlation analysis showed that the higher the potential activity, the more current condition is worsened, but the relationship was not significant(r=-0.455, p>0.05). Conclusions: Airborne fiber concentrations in asbestos-containing buildings had weak relationships with current condition and potential activity.

An Investigation on the Airborne Asbestos Concentrations using PCM and TEM in the Public Buildings in Seoul (PCM과 TEM을 이용한 서울지역 일부 공공 건축물의 실내공기 중 석면농도 조사)

  • Chung, Sook-Nye;Nam, Eun-Jung;Hwang, Soon-Yong;Oh, Seok-Ryul;Shin, Jin-Ho;Eom, Seok Won;Chae, Young-Zoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.139-145
    • /
    • 2011
  • Objectives: This investigation is purposed to evaluate the airborne asbestos concentrations in the public buildings having asbestos containing materials(ACMs) in Seoul. Methods: The Seoul Metropolitan Government carried out an asbestos survey to the city-owned public buildings to identify the level of risk exposure, classified into low, moderate and high risk. To evaluate the airborne concentration of asbestos, 11 sampling sites in ten buildings based on the survey were selected. The air samples from the eleven sites were analyzed by Phase Contrast Microscopy(PCM) and Transmission Electron Microscopy (TEM), and compared the analytical results from the both. Results: 1. The airborne fiber concentrations by PCM were less than the detection limit($7f/mm^2$) in 9(82%) out of 11 sampling sites. The highest concentration was 0.0043 f/cc, but it was below the guideline value for indoor air quality(0.01 f/cc), proposed by the Ministry of Environment, Korea. 2. In two sampling sites, having moderate risk level, the chrysotile was identified and showed it's concentrations of 0.0102 s/cc and 0.0058 s/cc, less than $5{\mu}m$ lengths. 3. The ACMs identified in the two sampling sites were a packing material(65% of chrysotile) in mechanical area and a thermal system insulation(5% of chrysotile) in a boiler room. Having more possibility of asbestos emission in the mechanical area, it would be required to set up and carry out the asbestos management plan. Conclusions: Based on the result of this study, the airborne asbestos concentrations in the public buildings with ACMs were generally lower than the guideline value for indoor air quality. There are widespread concerns about the possible health risk resulting from the presence of airborne asbestos fibers in the public buildings. Most of the previous studies about airborne asbestos analysis in Korea were performed based on PCM method that asbestos and non-asbestos fibers are counted together. In the public and commercial buildings, having ACMs, it is suggested that the asbestos be analyzed by TEM method to identify asbestos due to concerns about asbestos exposure to workers and unspecified people.

A Proposal of Hazard/Risk Assessment Criteria and an Asbestos Management Method for Asbestos-containing Building Materials

  • Park, Wha-Me;Kim, Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.66-72
    • /
    • 2012
  • Objectives: The AHERA method by the US EPA, ASTM E2356-04, and HSG264 by the UK HSE, all of which are hazard/risk assessment methods for asbestos-containing building materials, were reviewed and compared based on 231 homogeneous areas. In addition, the current Act on Asbestos Safety Management (enforcement: April 29, 2012) was reviewed and analyzed. This trial provided fundamental data for improving the current asbestos hazard/risk assessment method. Methods: For the hazard/risk assessment of 77 asbestos-containing public buildings including schools, 231 homogeneous areas were selected, each of which was assessed using AHERA, ASTM E2356-04, and HSG264. Results: The matching rate of the hazard/risk assessment stood at 20.4 percent between AHERA and ASTM, at 71.4 percent between AHERA and HSG264 and at 17.8 percent between ASTM and HSG264. The AHERA method includes a seven-category rating scale. There were three categories, two of which have three subcategories. ASTM provides two decision-making charts consisting of ten rating scales for current condition estimation and for potential for disturbance estimation. In addition, the HSG264 method has a total of 20 scores with four items, and then provides four grades. This HSG264 method cannot clearly separate current condition and potential for disturbance. Conclusions: In the Korean Act on Asbestos Safety Management, the hazard/risk assessment method for asbestos-containing building materials should consider balance between current condition estimation and the potential for disturbance estimation.

A Study on Characteristics of Airborne Asbestos Concentrations at Demolition Sites and Surrounding Areas of Asbestos Containing Buildings in Seoul (서울시내 건축물 석면해체·제거 사업장 및 주변에서의 공기 중 석면농도 특성에 관한 연구)

  • Lee, Jinhyo;Lee, Suhyun;Kim, Jeongyeun;Kim, Jihui;Chung, Sooknye;Kim, Jina;Kim, Iksoo;Eo, Soomi;Jung, Kweon;Lee, Jinsook;Koo, Jayong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.434-441
    • /
    • 2014
  • This study is purposed to measure airborne asbestos concentrations at demolition sites and surrounding areas of asbestos containing buildings in Seoul and examine whether the measurement results correspond with allowable exhaust standard for asbestos of the Asbestos Safety Control Act. The airborne asbestos concentrations for 37 sites were below the detection limit ($7fiber/mm^2$) in 101 (35%) out of 288 samples. The whole average airborne asbestos concentration in 37 sites was $0.003{\pm}0.002f/cc$(max 0.0013 f/cc) and almost the whole airborne asbestos concentrations were satisfied with allowable exhaust standard for asbestos, 0.01 f/cc, of the Asbestos Safety Control Act. So possibility of asbestos exposure is not yet a major concern at current levels for sites demolished of asbestos containing buildings in Seoul. Looking at each sampling point, the average airborne asbestos concentrations in boundary line of site, entrance of sanitation, around the workplace (in), around the workplace (out), negative pressure units, storage area for waste, outlet for waste and residential area of residents were respectively $0.002{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.004{\pm}0.002f/cc$, $0.005{\pm}0.004f/cc$, $0.005{\pm}0.003f/cc$ and $0.003{\pm}0.002f/cc$. As a result, all sampling points of study were satisfied with allowable exhaust standard for asbestos, 0.01 f/cc, of the Asbestos Safety Control Act.

Application of JSA and Checklist in Asbestos Sealing (석면 해체제거 보양작업에서 JSA 및 Checklist 적용)

  • Cho, Guy Sun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • As asbestos-containing buildings are getting older, asbestos deconstruction works are increasing. As a result, accident risks such as falls, cuts, electric shocks, and suffocation are increasing. Existing studies are mostly about health management and institutional policy research and there is little research on work risk. So workplace risk assessments that are easily applicable in the field are required to be applied. Sealing is the first process of asbestos deconstruction and is the first step to ensure worker's safety. Job Safety Analysis(JSA) and Checklist were used to identify the risk factors and to calculate the level of the risk. By comparing the two risk assessment tools, it was figured out that the JSA is appropriate for the initial process and change of work procedure while Checklist is appropriate for repetitive work. Because the sealing process is sort and simple, it is unlikely to cause serious injury. But since the risk of falling and cuts are exist, safety education and supervision are necessary to maintain a safe working environment.