• Title/Summary/Keyword: artificial light sources

Search Result 90, Processing Time 0.034 seconds

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

The Development of Container-type Plant Factory and Growth of Leafy Vegetables as Affected by Different Light Sources (컨테이너 식물공장의 개발과 이를 활용한 광원별 엽채류의 생장특성)

  • Um, Yeong-Cheol;Oh, Sang-Seok;Lee, Jun-Gu;Kim, Seung-Yu;Jang, Yoon-Ah
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • For the energy-saving production of fresh vegetables in poor environment such as the Antarctic, a container-type plant factory was designed and developed. To maximize space usage of the 20 feet container ($L5.9m{\times}W2.4m{\times}H2.4m$), a three-level hydroponic cultivation system was installed and the nutrient solution was supplied by bottom watering. Using this system, 3 lettuce cultivars were grown under different the light source (light intensity). After 2 weeks from the transplanting, fluorescent lamp ($145\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed the best fresh weight of top part and leaf area. However, After 4 weeks, fluorescent lamp plus metal halide lamp ($150\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) led to the optimum growth of the each lettuce cultivar. The cultivar, 'Cheongchima', showed the best fresh weight of top part and leaf area, followed by 'Jeokchukmyeon' and 'Lollo rosa'. The chlorophyll concentrations (SPAD) showed no significant difference among the sources of lights. However, 'Cheongchima' showed relatively high chlorophyll concentration. With the above results, we found that the growth of lettuce is depend on light intensity and even at same intensity, the growth is different among the cultivars. Therefore, the selection of optimum cultivar should be considered in the plant factory system that has only weak light density.

Studies on Favorable Light Condition for Artificial Cultivation of Grifola frondosa (잎새버섯 재배에 적합한 광조건 연구)

  • Chi, Jeong-Hyun;Kim, Jeong-Han;Won, Sun-Yee;Seo, Geon-Sik;Ju, Young-Cheoul
    • The Korean Journal of Mycology
    • /
    • v.36 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • To elucidate optimum light conditions for artificial cultivation of Grifola frondosa, the effects of light quality (blue, green, white) and light intensity (200, 500, 800, 1200 lux) on primordium formation, morphological properties and yield of fruiting bodies of G. frondosa using bag cultivation method were tested. Among three light sources, white light source ($400{\sim}620\;nm$) had a higher mushroom yield (242 g/bag) and a shorter cultivation period (52 days) than those of the others. In particular, blue light source ($400{\sim}560\;nm$) induced the morphology of wide and deep colored pilei in G. frondosa fruiting body. The experimental results on the appropriate light intensity indicated that 500 lux light was the most effective on mushroom production, whereas primordium formation was effective at 200 lux.

Effects of Artificial Light Sources on Growth and Glucosinolate Contents of Hydroponically Grown Kale in Plant Factory (식물공장 인공광원이 케일의 생육 및 글루코시놀레이트 함량에 미치는 영향)

  • Lee, Guang-Jae;Heo, Jeong-Wook;Jung, Chung-Ryul;Kim, Hyun-Hwan;Jo, Jung-Su;Lee, Jun-Gu;Lee, Gyeong-Ja;Nam, Sang-Young;Hong, Eui-Yon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.77-82
    • /
    • 2016
  • This study was carried out to investigate the effects of artificial light sources on growth, yield, and glucosinolate content of hydoroponically grown Peucedanum japonicum in plant factory. Treatments were given with LED Blue:White(1:1, B:W), LED Red:Blue:White(2:1:3, RBW), and LED Blue:White(1:1)+Florescent lamp(BW+FL). Number of harvested leaves and leaf weight of BW+FL were higher than BW and RBW. BW+FL in leaf length and RBW in leaf width were significant difference with other treatments. Chlorophyll content and 'L' value were not significant difference among the treatments. The 'a' and 'b' value is the lowest in BW+FL. Glucosinolate content was high in order of glucobrassicin, glucoiberin, sinigrin, gluconasturtiin, progoitrin, glucoraphamin, and epiprogoitrin in all treatments, and total glucosinolate content was the highest in RBW treatment. Moisture, crude protein, crude fat, and ash content of leaves were not different among the treatments. In conclusion, this study showed that light caused growth and secondary metabolites synthesis, and we recommend to further study between light and secondary metabolites for increasing functionality.

Growth of Kale Seedlings Affected by the Control of Light Quality and Intensity under Smart Greenhouse Conditions with Artificial Lights (인공광 스마트온실에서 광질 및 광강도 제어가 케일 실생묘의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Jae-Su;Lee, Gong-In;Kim, Hyun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • BACKGROUND: Plant growth under smart greenhouse (that is plant factory system) conditions of an artificial light type is significantly depending on the artificial light sources such as a fluorescent lamps or Light-Emitting Diodes (LEDs) with specific spectral wavelengths regardless of the outside environmental changes. In this experiment, characteristics on the growth and compound synthesis of kale seedlings affected by light qualities and intensities provided by LEDs were mentioned. METHODS AND RESULTS: The kale seedlings which developed 3~4 true leaves were exposed by fluorescent lamps or LEDs lights of red (R), blue+white (BW), blue+red (BR) with 50 (L) or $100(H){\mu}mol/m^2/s^1$ photosynthetic photon flux (PPF) under hydroponic culture system of deep flow technique for 50 days. Shoot fresh weight increased under the RH, BWH, and BRH treatments with higher PPF. Shoot elongation of the seedlings decreased, and polyphenol synthesis promoted by the higher light intensity conditions. Sugar synthesis in the leaves was above 2 times greater under the RH treatment of monochromic red light quality with $100{\mu}mol/m^2/s^1\;PPF$ than $50{\mu}mol/m^2/s^1\;PPF$. CONCLUSION: The results show that the control of light quality and intensity in the smart greenhouse conditions with artificial lights significantly affects the growth and compound synthesis in the fresh kale leaves with higher culture efficiency compared to the conventional soil culture under greenhouse or field conditions. Researches on the optimum light intensities of the LEDs with special spectral wavelengths are necessary for maximum growth and metabolism in the seedlings.

Changes in Photosynthetic Rate of Ginseng under Light Optical Properties in Smart Farms (스마트 팜에서의 광 특성에 따른 인삼의 광합성률 변화)

  • Lee, Jung-Min;Park, Jae-Hoon;Lee, Eung-Pill;Kim, Eui-Joo;Park, Ji-Won;You, Young-Han
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.3
    • /
    • pp.304-310
    • /
    • 2020
  • Smart farm is a high-tech type of plant factory that artificially makes environmental conditions suitable for the growth of plants and manages them to automatically produce the desired plants regardless of seasons or space. This study was conducted by identifying the effects of Hertz and Duty ratio on the photosynthetic rate of ginseng, a medicinal crop, to find the optimal conditions for photosynthetic responses in smart farms. The light sources consisted of a total of 10 chambers using LED system, with 4 R+B(red+blue) mixed lights and 6 R+B+W (red+blue+white) mixed lights. In addition, the Hertz of the R+B mixed light was treated at 20, 60, 180, 540, 1620 and 4860 hz respectively. The R+B+W mixed light was treated with 60, 180, 540, and 1620 hz. Afterwards, experiments were conducted with the duty ratio of 30, 50, and 70%. As a result, the photosynthetic rate of ginseng according to duty ratio and Hertz was the highest at 60 hz when duty ratio was set to 50%. On the other hand, that was the lowest when the duty ratio was 30% at the same 60 hz. In addition, the photosynthetic rates were highest in the R+B mixed light and R+B+W mixed light at 60 hz. Therefore, the condition with the highest photosynthetic rate of ginseng in smart farms is 60 hz when the duty ratio in R+B mixed light is 50%.

A case study of life cycle cost analysis on high pressure sodium lamp and LED lamp for tunnel lighting (터널 조명 고압나트륨램프와 LED램프의 LCC 분석 사례 연구)

  • Lee, Gyu-Phil;Kim, Jeong-Heum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • Tunnel is the most energy-consuming structure in road due to the characteristic of using artificial lighting during day and night. Therefore, tunnel lights are being replaced by LED lamp that have advantages with respect to low power consumption. The best use of social overhead capital can be expected by considering the life cycle cost, because to tunnel structures are accompanied by a series of medium-to-long-term and continuous processes of replacing auxiliary facilities. In this study, the saving effect by LCC analysis was quantitatively analyzed by replacing tunnel light sources from high-pressure sodium lamps to LED lamps. The effect of reducing the replacement cycle by increasing the life of the lamps and the resulting maintenance cost is very significant, on replacing tunnel lighting light sources with LED lamp.

Growth and Anthocyanin Content of Lettuce as Affected by Artificial Light Source and Photoperiod in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 인공광원과 광조사 시간에 따른 상추의 생장 및 안토시아닌 함량)

  • Park, Ji Eun;Park, Yoo Gyeong;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • This study was conducted to examine the effect of artificial light source and photoperiod on the growth of leaf lettuce (Lactuca sativa L.) 'Seonhong Jeokchukmyeon' in a closed-type plant production system. Seedlings were grown under 3 light sources, fluorescent lamp (FL, Philips Co. Ltd., the Netherlands), WL #1 (Hepas Co. Ltd., Korea), and WL #2 (FC Poibe Co., Ltd., Korea), each with 3 photoperiods, 12/12, 18/6, and 24/0 (Light/Dark). An irradiance spectrum analysis showed that FL has various peaks in the 400-700 nm range, while WL #1 and WL #2 have only one monochromatic peak at 450 and 550 nm, respectively. The greatest plant height, fresh and dry weights were obtained in the 24/0 (Light/Dark) photoperiod. The 24/0 (Light/Dark) photoperiod treatment promoted vegetative growth of the leaf area. Length of the longest root, number of leaves, fresh weight, and total anthocyanin contents were greater in FL than in either WL #1 or #2. The greatest chlorophyll fluorescence (Fv/Fm) was found in the 12/12 (Light/Dark) photoperiod with FL treatment. The energy use efficiency of the LED increased by about 35-46% as compared to FL. Results suggest a possibility of LED being used as a substitute light source for fluorescent lamp for lettuce cultivation in a plant factory system.

The effect of artificial lights on the growth and quality of hydroponic cultivated barley (Hordeum vulgare L.) sprouts (인공조명이 수경재배 새싹보리(Hordeum vulgare L.)의 생장과 품질에 미치는 영향)

  • Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.62-70
    • /
    • 2021
  • We analyzed the growth and quality characteristics of barley sprouts grown under artificial light sources consisting of a fluorescent lamp or light-emitting diode (LED) in an aquaculture system (grown with water only, without nutrients). At the end of the observation period, the shoots grown under the fluorescent lamp treatment were the longest, followed by the LED treatment and natural light-treatment. It was also observed that growth was faster for sprouts subjected to a non-sterilizing treatment than those subjected to a 70% ethanol treatment. As the seed sowing rate for planting trays increased, the yield of harvested barley sprouts increased; among light treatments, the natural light treatment resulted in the lowest yield, while the fluorescent light treatment resulted in the highest. The total phenol and total flavonoid contents of extracts of the barley sprouts were highest for the natural light treatment, but TEAC and FRAP were both highest for the fluorescent lamp treatment. The essential amino acid content ranged from 41.64 to 45.93 mg/g and was relatively higher for the natural light treatment than the other two treatments, while the content of non-essential amino acids was highest for the LED treatment. The total amino acid content was highest for the LED treatment at 97.47 ± 6.30 mg/g, for which the content of non-essential amino acids (53.17%) was higher than that of essential amino acids (46.83%).

Response od Striped Puffer to the White Light (백색광에 대한 까치복의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.144-149
    • /
    • 1988
  • The purpose of this study is to find the light intensity which induced maximum gathering rate and to observe the variation of the gathering rate both in daytime and tat night by using Striped puffer, Fugu xanthopterus (Temminck et Schlegel). An experimental tank(360L$\times$50W$\times$55H cm) was set up in a dark room. An illumination system was attached to the end of one side of the tank to control horizontal light intensity. Eight artificial light sources were prepared by combination of three light bulbs (10W, 60W, 100W) and eight filters. During the experiment water depth was maintained 50 cm level in the tank. The tank was marked into six longitudinal sections each being 60cm long to observe the distribution of fish. The fish were acclimatized in dark condition for 50 minutes prior to the main experiment. Upon turning on the light, the number of fish in each section was counted 60 times every 30 seconds, and the gathering rate was obtained from the average number of fish in each section. The light intensity inducing maximum gathering rate was 298.56 lux (188.44-444.96 lux) at daytime and 298.56 lux (188.44-444.96 lux) at night. The variation of the gathering rate of fish in illumination time was increasing trend fluctuately and did not show any distinctive difference between day and night.

  • PDF