DOI QR코드

DOI QR Code

Effects of Artificial Light Sources on Growth and Glucosinolate Contents of Hydroponically Grown Kale in Plant Factory

식물공장 인공광원이 케일의 생육 및 글루코시놀레이트 함량에 미치는 영향

  • Lee, Guang-Jae (Div. of Horticultural Research, Chungbuk Agricultural Research and Extension Service) ;
  • Heo, Jeong-Wook (Div. of Farming Automation, National Academy of Agricultural Science) ;
  • Jung, Chung-Ryul (Div. of Farming Automation, National Academy of Agricultural Science) ;
  • Kim, Hyun-Hwan (Div. of Farming Automation, National Academy of Agricultural Science) ;
  • Jo, Jung-Su (Dept. of Horticultural Science, Chonbuk National University) ;
  • Lee, Jun-Gu (Dept. of Horticultural Science, Chonbuk National University) ;
  • Lee, Gyeong-Ja (Div. of Horticultural Research, Chungbuk Agricultural Research and Extension Service) ;
  • Nam, Sang-Young (Div. of Horticultural Research, Chungbuk Agricultural Research and Extension Service) ;
  • Hong, Eui-Yon (Div. of Horticultural Research, Chungbuk Agricultural Research and Extension Service)
  • 이광재 (충청북도농업기술원 원예연구과) ;
  • 허정욱 (국립농업과학원 생산자동화기계과) ;
  • 정충렬 (국립농업과학원 생산자동화기계과) ;
  • 김현환 (국립농업과학원 생산자동화기계과) ;
  • 조정수 (전북대학교 원예학과) ;
  • 이준구 (전북대학교 원예학과) ;
  • 이경자 (충청북도농업기술원 원예연구과) ;
  • 남상영 (충청북도농업기술원 원예연구과) ;
  • 홍의연 (충청북도농업기술원 원예연구과)
  • Received : 2016.03.15
  • Accepted : 2016.05.02
  • Published : 2016.06.30

Abstract

This study was carried out to investigate the effects of artificial light sources on growth, yield, and glucosinolate content of hydoroponically grown Peucedanum japonicum in plant factory. Treatments were given with LED Blue:White(1:1, B:W), LED Red:Blue:White(2:1:3, RBW), and LED Blue:White(1:1)+Florescent lamp(BW+FL). Number of harvested leaves and leaf weight of BW+FL were higher than BW and RBW. BW+FL in leaf length and RBW in leaf width were significant difference with other treatments. Chlorophyll content and 'L' value were not significant difference among the treatments. The 'a' and 'b' value is the lowest in BW+FL. Glucosinolate content was high in order of glucobrassicin, glucoiberin, sinigrin, gluconasturtiin, progoitrin, glucoraphamin, and epiprogoitrin in all treatments, and total glucosinolate content was the highest in RBW treatment. Moisture, crude protein, crude fat, and ash content of leaves were not different among the treatments. In conclusion, this study showed that light caused growth and secondary metabolites synthesis, and we recommend to further study between light and secondary metabolites for increasing functionality.

본 연구는 식물공장 인공광원이 수경재배 케일의 생육, 수량 및 글루코시놀레이트(GLS) 함량에 미치는 영향을 구명코자 수행하였다. 인공광원으로 LED B:W(1:1, BW), R:B:W(2:1:3, RBW), BW+형광등(1:1+FL, BW+FL) 등 3처리를 하였다. 수확 엽수와 엽중은 BW+FL이 BW와 RBW보다 우수하였다. 엽장은 BW+FL에서, 엽폭은 RBW가 우수하여 다른 처리와 통계적인 유의성을 나타냈다. 엽록소 함량과 'L' 값은 처리간에 유의성이 없었으며, 'a' 값과 'b' 값은 BW+FL에서 가장 낮았다. GLS 함량은 모든 처리에서 glucobrassicin, glucoiberin, gluconasturtiin, sinigrin, progoitrin, glucoraphamin, epiprogoitrin 순으로 많았으며, 총 GLS 함량은 RBW에서 가장 높았다. 잎의 수분 함량, 조단백질, 조지방 함량, 회분 함량은 처리간에 유의성을 나타내지 않았다. 결론적으로 광은 생육과 2차 대사산물의 합성에 차이가 나타내며, 기능성 향상을 위해 후속 연구가 필요하다고 판단된다.

Keywords

References

  1. Angelini L., L. Lazzeri, S. Galletti, A. Cozzani, M. Macchia, and S. Palmieri. 1998. Antigerminative activity of three glucosinolate- derived products generated by myrosinase hydrolysis. Seed Science and Technology 26:771-779.
  2. Barth, C., and G. Jander. 2006. Arabidopsis myrosinase TGG1 and TGG2 have redundant function in glucosinolate break down and insect defense. Plant J. 46:549-562. https://doi.org/10.1111/j.1365-313X.2006.02716.x
  3. Dixon, R.A. and N.L. Oaiva. 1995. Stress induced phenylpropanoid metabolism. Plant Cell 7:1,085-1,097. https://doi.org/10.1105/tpc.7.7.1085
  4. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  5. Glivetic, T., K. Delonga, and J. Vorkapic-Furac. 2008. Glucosinolates and their potential role in plant. Periodicum Biologorum 110:297-309.
  6. Hansen, B.G., R.E. Kerwin, J.A. Ober, V.M. Lambrix, T. Michell-Olds, J. Gershenzon, B.A. Halkier, and D.J. Kliebenstein. 2008. A novel- oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut- 3 -enylglucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol. 148:2096-2108. https://doi.org/10.1104/pp.108.129981
  7. Heo, J.W., Y.B. Lee, Y.S. Chang, J.T. Lee, and D.B. Lee. 2010a. Effects of light quality and lighting type using an LED Chamber System on Chrysanthemum growth and development cultured in vitro. Kor. J. Environ. Agr. 29:374- 380. https://doi.org/10.5338/KJEA.2010.29.4.374
  8. Ikeda, A., Y. Tanimura, K. Ezaki, Y. Kawai, S. Nakayama, and K. Iwao. 1992. Environmental control and operation monitoring in a plant factory using artificial light. Acta Hort. 304:151-158.
  9. Inden, H., Y. Akamatsu, T. Matsuda, and M. Yamamoto. 2011. Low cost plant factory using hybrid electrode fluorescent lamp (HEFL). Acta Hort. 907:157-160.
  10. Ivana R.R., G. Tajana, D. Karmela, and V. Jasna. 2008. Glucosinolates and their potential role in plant Periodicum Biologorum 110:297-309.
  11. Jahangir, M., H.K. Kim, Y.H. Choi, and R. Verpoorte. 2009. Health-affecting compouds in Brassicaceae. Comprehensive Rev. Food Safety. 8:31-43. https://doi.org/10.1111/j.1541-4337.2008.00065.x
  12. Kim, S.B., K.M. Lee, H.R. Kim, and Y.H. You. 2014. Effects of light sources light quality on the growth response of leafy vegetables in closed-type plant factory system. KJJEE. 47:32-40. https://doi.org/10.11614/KSL.2014.47.1.032
  13. Kwon S.T., and D.J. Kliebenstein. 2014. Response of Turnip to Botrytis cinerea infection and their relationship with glucosinolate profiles. Korean J. Plant Res. 27(4):371-379. https://doi.org/10.7732/kjpr.2014.27.4.371
  14. Lee G.J., J.W. Heo, C.R.Jung, J.B. Yoon, H.H. Kim, D.E. Kim, and S.Y. Nam. 2015. Effects of plant factory cultural systems on growth, vitamin C and amino acid contents, and yield in hydroponically grown Peucedanum japonicum. Protected Horticulture and Plant Factory. 25(1):281-286.
  15. Lee G.J., J.W. Heo, H.H. Kim, C.R.Jung, D.E. Kim, and S.Y. Nam. 2016. Effects of artificial light sources on growth and yield of Peucedanum japonicum hydroponically grown in plant factory. Protected Horticulture and Plant Factory. 25(1):16-23. https://doi.org/10.12791/KSBEC.2016.25.1.16
  16. Lee M.J., S.Y. Lim, J.K. Kim, and M.M. Oh. 2012. Heat shock treatments induce the accumulation of phytochemicals in kale sprouts. J. Kor. Hort. Sci. Technol. 30:509-518.
  17. Lee S.W. 2010. Optical science and technology. Plant cultivate used plant factor and LED artificial light. Gyeonggi-do Agricultural Research and Extension Service. 14(3):12-19.
  18. Mithen, R. 1992. Leaf glucosinolate profile and their relationship to pest and disease resistance in oilseed rape. Euphytica 63:71-83. https://doi.org/10.1007/BF00023913
  19. Moon J.H., M.J. Jeong, S.I. Lee, J.G. Lee, H.S. Hwang, J.W. Yu, Y.R. Kim, S.W. Park, and J.A. Kim. 2015. Effect of LED mixed light conditions on the glucosinolate pathway in Brassica rapa. J. Plant Biotechnol. 42:245-257. https://doi.org/10.5010/JPB.2015.42.3.245
  20. Pedras M.S.C., E.E. Yaya, and E. Glawischnig. 2011. The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Nat. Prod. Rep. 28:1381-1405. https://doi.org/10.1039/c1np00020a
  21. Schmidt, S., M. Zietz, S. Rohn, L.W. Kroh, and A. Krumbei. 2010. Genotypic and climatic influences on the concentration and composition of flavonoids in kale(Brassica oleracea var. sabellica). Food Chem. 119:1,293-1,299. https://doi.org/10.1016/j.foodchem.2009.09.004
  22. Shin, Y.S., M.J. Lee, E.S. Lee, J.H. Ahn, J.H. Lim, S.D. Park, J.H. Chai, and H.W. Park. 2012. Effect of light emitting diode on growth and mineral absorption of lettuce (Lactuca sativa L.). Kor. J. Hort. Sci. Technol. 30(S1): 205.
  23. Zhang, Y. and P. Talay. 1994. Anticarcinogenic activities of organic isothilcyanates: chemistry and mechanisms. Cancer research. 54:1,976-1,981.