DOI QR코드

DOI QR Code

Growth and Anthocyanin Content of Lettuce as Affected by Artificial Light Source and Photoperiod in a Closed-type Plant Production System

밀폐형 식물생산시스템에서 인공광원과 광조사 시간에 따른 상추의 생장 및 안토시아닌 함량

  • Park, Ji Eun (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Park, Yoo Gyeong (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Hwang, Seung Jae (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University)
  • 박지은 (경상대학교대학원 응용생명과학부(BK21 Program)) ;
  • 박유경 (경상대학교대학원 응용생명과학부(BK21 Program)) ;
  • 정병룡 (경상대학교대학원 응용생명과학부(BK21 Program)) ;
  • 황승재 (경상대학교대학원 응용생명과학부(BK21 Program))
  • Received : 2012.02.07
  • Accepted : 2012.07.26
  • Published : 2012.12.31

Abstract

This study was conducted to examine the effect of artificial light source and photoperiod on the growth of leaf lettuce (Lactuca sativa L.) 'Seonhong Jeokchukmyeon' in a closed-type plant production system. Seedlings were grown under 3 light sources, fluorescent lamp (FL, Philips Co. Ltd., the Netherlands), WL #1 (Hepas Co. Ltd., Korea), and WL #2 (FC Poibe Co., Ltd., Korea), each with 3 photoperiods, 12/12, 18/6, and 24/0 (Light/Dark). An irradiance spectrum analysis showed that FL has various peaks in the 400-700 nm range, while WL #1 and WL #2 have only one monochromatic peak at 450 and 550 nm, respectively. The greatest plant height, fresh and dry weights were obtained in the 24/0 (Light/Dark) photoperiod. The 24/0 (Light/Dark) photoperiod treatment promoted vegetative growth of the leaf area. Length of the longest root, number of leaves, fresh weight, and total anthocyanin contents were greater in FL than in either WL #1 or #2. The greatest chlorophyll fluorescence (Fv/Fm) was found in the 12/12 (Light/Dark) photoperiod with FL treatment. The energy use efficiency of the LED increased by about 35-46% as compared to FL. Results suggest a possibility of LED being used as a substitute light source for fluorescent lamp for lettuce cultivation in a plant factory system.

본 실험은 밀폐형 식물생산시스템에서 인공광원과 광조사 시간에 따른 잎상추 '선홍적축면' 품종의 적정 생육 조건을 구명하고자 수행하였다. 상추 유묘를 3종류의 인공광원인 형광등과 에프씨 포이베(사)와 헤파스(사)의 백색 LED 아래에서 재배하였고, 광조사 시간을 각각 12/12, 18/6, 24/0(명기/암기)으로 처리하였다. 광파장대를 측정한 결과 형광등은 400-700nm 범위에서 다양한 피크를 나타냈지만, 2종류의 백색 LED에서는 450nm와 550nm의 파장대역에서만 피크를 나타냈다. 초장, 생체중 및 건물중은 광조사 시간을 24/0(명기/암기)으로 처리하였을 때 가장 우수했다. 또한 엽면적도 광조사 시간 24/0(명기/암기) 처리구에서 좋았다. 형광등 처리가 2종류의 백색 LED와 비교하여 최대근장, 엽수, 생체중 및 총 안토시아닌 함량이 우수하였다. 엽록소 형광값은 형광등을 사용하여 광조사 시간을 12/12(명기/암기)로 처리하였을 때 가장 높았다. 형광등 광원에서 광 에너지 사용 효율은 LED 등이 형광등과 비교하여 약 35-46% 더 높았다. 본 결과는 식물공장 시스템에서 상추 재배를 위한 형광등의 대체 광원으로써 LED의 이용가능성을 보여 주었다.

Keywords

References

  1. Attridge, T.H. 1990. Light and plant responses. Edward Arnold, London.
  2. Berghage, R.D., J.E. Erwin, and R.D. Heins. 1991. Photoperiod influences leaf chlorophyll content in chrysanthemum grown with a negative DIF temperature regime. HortScience 26:92. (Abstr.)
  3. Britz, S.J. and J.C. Sager. 1990. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue deficient light sources. Plant Physiol. 82:909-915.
  4. Choi, Y.H., J.K. Kwon, J.H. Lee, N.J. Kang, M.W. Cho, and J.S. Kang. 2004. Effect of night and daytime temperatures on growth and yield of paprika 'Fiesta' and 'Jubilee'. J. Bio-Environ. Con. 13:226-232.
  5. Dorais, M., A. Gosselin, and M.J. Trudel. 1990. Annual greenhouse tomato production under a sequential intercropping system using supplemental light. Sci. Hort. 45:225-234.
  6. Dougher, T.A.O. and B. Bugbee. 2001. Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Phytochem. Photobiol. 73:199-207. https://doi.org/10.1562/0031-8655(2001)073<0199:DITROW>2.0.CO;2
  7. Erwin, J.E. and R.D. Heins. 1991. Temperature and photoperiod effects on Fuchsia x hybrid morphology. J. Amer. Soc. Hort. Sci. 116:955-960.
  8. Fuleki, T. and F.J. Francis. 1968. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33:72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  9. Genty, B., J.M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transportand quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  10. Giliberto, L., G. Perrotta, P. Pallara, J.L. Weller, P.D. Fraser, P.M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137:199-208. https://doi.org/10.1104/pp.104.051987
  11. Heo, J.W., Y.B. Lee, D.B. Lee, and C.H. Chun. 2009. Light quality affects growth, net photosynthetic rate, and ethylene production of ageratum, african marigold, and salvia seedlings. Kor. J. Hort. Sci. Technol. 27:187-193.
  12. Hoenecke, M.E., R.J. Bula, and T.W. Tibbitts. 1992. Importance of blue photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27:427-430.
  13. Hwang, M.K., C.S. Huh, and Y.J. Seo. 2004. Optic characteristics comparison and analysis of SMD type Y/G/W HB LED. J. Kllee. 18:15-21. https://doi.org/10.5207/JIEIE.2004.18.4.015
  14. Ikeda, A., S. Nakayama, Y. Kitaya, and K. Yabuki. 1988a. Effects of photoperiod, $CO_2$ concentration, and light intensity on growth and net photosynthetic rates of lettuce and turnip. Acta Hort. 229:273-282.
  15. Ikeda, A., S. Nakayama, Y. Kitaya, and K. Yabuki. 1988b. Basic study on material production in plant factory (1)-Effects of photoperiod, light intensity, and $CO_2$ concentration on photosynthesis of lettuce. Environ. Control Biol. 26:107-112. (in Japanese with English summary) https://doi.org/10.2525/ecb1963.26.107
  16. Kang, S.B., H.I. Jang, I.B. Lee, J.M. Park, and D.K. Moon. 2008. Effect of waterlogging condition on the photosynthesis of 'Campbell Early' grapevine. Kor. J. Hort. Sci. Technol. 26:372-379.
  17. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617-1622.
  18. Kim, Y.H. 1997. The physical term of the light related to the plant production and concept. J. Biosystems Eng. 22:503-512.
  19. Knight, S.L. and C.A. Mitchell. 1983. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition. J. Amer. Soc. Hort. Sci. 108:750-754.
  20. Knight, S.L. and C.A. Mitchell. 1988. Effects of $CO_2$ and photosynthetic photon flux on yield, gas exchange and growth rate of Lactuca sativa 'Waldmann's Green'. J. Expt. Bot. 39:317-328. https://doi.org/10.1093/jxb/39.3.317
  21. Koontz, H.V. and R.P. Prince. 1986. Effect of 16 and 24 hours daily radiation (light) on lettuce growth. HortScience 21:123-124.
  22. Kozai, T. 2007. Propagation, grafting and transplant production in closed systems with artificial lighting for commercialization in Japan. Prop. Ornamental Plants 7:145-149.
  23. Lavorel, J. and A.L. Etienne. 1977. In vivo chlorophyll fluorescence, p. 203-268. In: J. Barber (ed.). Primary processes of photosynthesis. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherand.
  24. Lee, J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio-Environ. Con. 19:351-359.
  25. Ninu, L., M. Ahmad, C. Miarelli, A.R. Cashmore, and G. Giuliano. 1999. Cryptochrome 1 controls tomato development in response to blue light. Plant J. 18:551-556. https://doi.org/10.1046/j.1365-313X.1999.00466.x
  26. Nishimura, T., K. Ohyama, E. Goto, and N. Iangaki. 2009. Concentration of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hort. 122:134-137. https://doi.org/10.1016/j.scienta.2009.03.010
  27. Nishimura, T., S.M.A. Zobayed, T. Kozai, and E. Goto. 2006. Effect of light quality of blue and red fluorescent lampson growth of St. John's wort (Hypericum perforatum L.) J. SHITA 18:225-229. https://doi.org/10.2525/shita.18.225
  28. Nishioka, N., T. Nishimura, K. Ohyama, M. Sumino, S.H. Malayeri, E. Goto, N. Inagaki, and T. Morota. 2008. Light quality affected growth and contents of essential oil components of Japanese mint plants. Acta Hort. 797:431-436.
  29. Okamoto, K., T. Yanagi, S. Takita, M. Tanaka, T. Higuchi, Y. Ushida, and H. Watanabe. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440:111-116.
  30. Salisbury, F.B. and C.W. Ross. 1992. Plant physiology. 4th ed. Wadsworth, Belmont, California.
  31. Sicora C., M. Zoltan and V. Imre. 2003. The interaction of visible and UV-B light during photodamage and repair of photosystem II. Photosyn. Res. 75:127-137. https://doi.org/10.1023/A:1022852631339
  32. Sonneveld, C. and N. Straver. 1994. Nutrient solutions for vegetables and flower grow in water on substrates. 10th ed. Proefstation voor tuinbouw onder glas te Naaldiwjk, no. 8, Holland, 45 p.
  33. Tadahisa, H., S. Hideo, H. Hiroshi, S. Teruaki, and T. Masuyuki. 2004. Characteristics of light and heat conditionsof a chamber with prism light guides and electrodeless discharge lamps and its effect on growth of tomato and cucumber seedlings. Yasai Chagyo KenkyujoKenkyu Hokoku 3:109-118.
  34. Takatsuji, M. 2008. Definition and meaning of the plant factory, p. 8-13. In: M. Takatsuji (ed.). Plant factory. World Science Publishment, Seoul.
  35. Technical Information Institute Co., LTD. (TIIC). 2009. A plant factory business strategy and the latest cultivation technology. TIIC, Tokyo, Japan.
  36. Um, Y.C., S.S. Oh, J.G. Lee, S.Y. Kim, and Y.A. Jang. 2010. The development of container-type plant factory and growth of leafy vegetables as affected by different light sources. J. Bio-Environ. Con. 19:333-342.

Cited by

  1. System Design and Performance Analysis of a Variable Frequency LED Light System for Plant Factory vol.39, pp.2, 2014, https://doi.org/10.5307/JBE.2014.39.2.087
  2. Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting vol.57, pp.6, 2016, https://doi.org/10.1007/s13580-016-0068-y
  3. Enhancement of Growth Characteristics and Biological Activities in Astragalus membranaceus Using Artificial Light Sources vol.65, pp.5, 2018, https://doi.org/10.1134/S1021443718050059
  4. Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes vol.59, pp.4, 2018, https://doi.org/10.1007/s13580-018-0058-3
  5. 밀폐형 식물생산시스템에서 백색 LED를 이용한 광도와 광주기에 따른 상추의 생장 vol.22, pp.3, 2013, https://doi.org/10.12791/ksbec.2013.22.3.228
  6. Influence of air temperature on yield and phytochemical content of red chicory and garland chrysanthemum grown in plant factory vol.54, pp.5, 2013, https://doi.org/10.1007/s13580-013-0095-x
  7. 방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석 vol.22, pp.4, 2012, https://doi.org/10.12791/ksbec.2013.22.4.400
  8. 상이한 광질 및 광주기 하에서 UV-A LED 부가 조사가 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 영향 vol.34, pp.4, 2012, https://doi.org/10.12972/kjhst.20160061
  9. 발광플라즈마 처리에 의한 들깨 부위별 항산화 및 Tyrosinase 저해 활성 효과 vol.25, pp.1, 2012, https://doi.org/10.7783/kjmcs.2017.25.1.37
  10. 다양한 광원이 배추 내 Carotenoid와 Glucosinolate 함량에 미치는 영향 vol.37, pp.2, 2012, https://doi.org/10.5338/kjea.2018.37.2.13
  11. Photosynthetic characteristics and growth performance of lettuce (Lactuca sativa L.) under different light/dark cycles in mini plant factories vol.58, pp.3, 2020, https://doi.org/10.32615/ps.2020.013
  12. 인공광원별 단삼의 생육특성 및 기능성 평가 vol.28, pp.3, 2020, https://doi.org/10.7783/kjmcs.2020.28.3.200
  13. Optimal photoperiod for indoor cultivation of leafy vegetables and herbs vol.85, pp.5, 2012, https://doi.org/10.17660/ejhs.2020/85.5.4
  14. Increased Plant Quality, Greenhouse Productivity and Energy Efficiency with Broad-Spectrum LED Systems: A Case Study for Thyme (Thymus vulgaris L.) vol.10, pp.5, 2012, https://doi.org/10.3390/plants10050960
  15. QTL Analysis of the Content of Some Bioactive Compounds in Brassica rapa L. Grown under Light Culture Conditions vol.7, pp.12, 2012, https://doi.org/10.3390/horticulturae7120583