In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.
Purpose: The objective of this scoping review was to investigate the applicability and performance of various convolutional neural network (CNN) models in tooth numbering on panoramic radiographs, achieved through classification, detection, and segmentation tasks. Materials and Methods: An online search was performed of the PubMed, Science Direct, and Scopus databases. Based on the selection process, 12 studies were included in this review. Results: Eleven studies utilized a CNN model for detection tasks, 5 for classification tasks, and 3 for segmentation tasks in the context of tooth numbering on panoramic radiographs. Most of these studies revealed high performance of various CNN models in automating tooth numbering. However, several studies also highlighted limitations of CNNs, such as the presence of false positives and false negatives in identifying decayed teeth, teeth with crown prosthetics, teeth adjacent to edentulous areas, dental implants, root remnants, wisdom teeth, and root canal-treated teeth. These limitations can be overcome by ensuring both the quality and quantity of datasets, as well as optimizing the CNN architecture. Conclusion: CNNs have demonstrated high performance in automated tooth numbering on panoramic radiographs. Future development of CNN-based models for this purpose should also consider different stages of dentition, such as the primary and mixed dentition stages, as well as the presence of various tooth conditions. Ultimately, an optimized CNN architecture can serve as the foundation for an automated tooth numbering system and for further artificial intelligence research on panoramic radiographs for a variety of purposes.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.1
/
pp.141-147
/
2024
Recently, there has been growing interest in personalized services tailored to an individual's preferences. This has led to ongoing research aimed at recognizing and leveraging an individual's personality traits. Among various methods for personality assessment, the OCEAN model stands out as a prominent approach. In utilizing OCEAN for personality recognition, a multi modal artificial intelligence model that incorporates linguistic, paralinguistic, and non-linguistic information is often employed. This paper examines the impact of the margin value set for extracting facial areas from video data on the accuracy of a personality recognition model that uses facial expressions to determine OCEAN traits. The study employed personality recognition models based on 2D Patch Partition, R2plus1D, 3D Patch Partition, and Video Swin Transformer technologies. It was observed that setting the facial area extraction margin to 60 resulted in the highest 1-MAE performance, scoring at 0.9118. These findings indicate the importance of selecting an optimal margin value to maximize the efficiency of personality recognition models.
Seong-Gun Yun;Hyeok-Chan Kwon;Eunju Park;Young-Bok Cho
Journal of the Korea Society of Computer and Information
/
v.29
no.9
/
pp.79-87
/
2024
This study aims to improve communication for people with hearing impairments by developing artificial intelligence models that recognize and classify emotions from voice data. To achieve this, we utilized three major AI models: CNN-Transformer, HuBERT-Transformer, and Wav2Vec 2.0, to analyze users' voices in real-time and classify their emotions. To effectively extract features from voice data, we applied transformation techniques such as Mel-Frequency Cepstral Coefficient (MFCC), aiming to accurately capture the complex characteristics and subtle changes in emotions within the voice. Experimental results showed that the HuBERT-Transformer model demonstrated the highest accuracy, proving the effectiveness of combining pre-trained models and complex learning structures in the field of voice-based emotion recognition. This research presents the potential for advancements in emotion recognition technology using voice data and seeks new ways to improve communication and interaction for individuals with hearing impairments, marking its significance.
Journal of the Korea Society of Computer and Information
/
v.28
no.12
/
pp.147-153
/
2023
As it spreads to all industries of artificial intelligence technology, AIaaS equipped with artificial intelligence services is emerging. In particular, non-IT companies are suffering from the absence of software experts, difficulties in training big data models, and difficulties in collecting and analyzing various types of data. AIaaS makes it easier and more economical for users to build a system by providing various IT resources necessary for artificial intelligence software development as well as functions necessary for artificial intelligence software in the form of a service. Therefore, the supply and demand for such cloud-based AIaaS services will increase rapidly. However, the quality of services provided by AIaaS becomes an important factor in what is required as the supply and demand for AIaaS increases. However, research on a comprehensive and practical quality evaluation metric to measure this is currently insufficient. Therefore, in this paper, we develop and propose a usability, replacement, scalability, and publicity metric, which are the four metrics necessary for measuring reusability, based on implementation, convenience, efficiency, and accessibility, which are characteristics of AIaaS, for reusability evaluation among the service quality measurement factors of AIaaS. The proposed metrics can be used as a tool to predict how much services provided by AIaaS can be reused for potential users in the future.
In recent years, the use of Fiber Reinforced Polymers (FRPs) as one of the most common ways to increase the strength of concrete samples, has been introduced. Evaluation of the final strength of these specimens is performed with different experimental methods. In this research, due to the variety of models, the low accuracy and impact of different parameters, the use of new intelligence methods is considered. Therefore, using artificial intelligent-based models, a new solution for evaluating the bond strength of FRP is presented in this paper. 150 experimental samples were collected from previous studies, and then two new hybrid models of Imperialist Competitive Algorithm (ICA)-Artificial Neural Network (ANN) and Artificial Bee Colony (ABC)-ANN were developed. These models were evaluated using different performance indices and then, a comparison was made between the developed models. The results showed that the ICA-ANN model's ability to predict the bond strength of FRP is higher than the ABC-ANN model. Finally, to demonstrate the capabilities of this new model, a comparison was made between the five experimental models and the results were presented for all data. This comparison showed that the new model could offer better performance. It is concluded that the proposed hybrid models can be utilized in the field of this study as a suitable substitute for empirical models.
For the planning of future land use for economic activities, an essential component is the identification of the vulnerable areas for natural hazard and environmental impacts from the activities. Also, exploration for mineral and energy resources is carried out by a step by step approach. At each step, a selection of the target area for the next exploration strategy is made based on all the data harnessed from the previous steps. The uncertainty of the selected target area containing undiscovered resources is a critical factor for estimating the exploration risk. We have developed not only spatial prediction models based on adapted artificial intelligence techniques to predict target and vulnerable areas but also validation techniques to estimate the uncertainties associated with the predictions. The prediction models will assist the scientists and decision-makers to make two critical decisions: (i) of the selections of the target or vulnerable areas, and (ii) of estimating the risks associated with the selections.
Purpose - The study was AI as exploratory study on artificial intelligence (AI) shopping information services, to explore the possibility of a new business of the distribution industry. For research, we compare to IBM of consumer awareness surveys an AI shopping information service for retailing channel and target goods group. Finally, we present to service scenario for distribution service using AI. Research design, data, and methodology - First, to identify possible the success of the information service shopping using AI, AI technology for the consumer is very important for the acceptance of judgement. Therefore, we explored the possibility of AI information service for business as a shopping. The experimental data were used to interpret the meaning of the relevant literature and the IBM Institute of Business Value (IBV) Report 2015. This research is based on the use of a technical acceptance model (TAM) to determine whether the consumer would adopt the 'AI shopping information service' technology. Step 1 of the process assumes that the consumer adopts AI technology. In step 2, consumers find their preference channels and goods targeted at them as per their preferences. Finally Step 3, we present scenario for 'AI shopping information service' based on the results of Step 1 and 2. Results - Consumers have expressed their high interests in the new shopping information services, especially the on/off line distribution channels can use shopping information to increase the efficiency in provision of goods. Digital channel (such as SNS, online shopping etc.) is especially high value goods such as cars, furniture, and home appliances by displaying it to an appropriate product group. Conclusions - The study reveals the potential for the use of new business models such as 'AI shopping information service' by the distribution industry. We present seven scenario related AI application refer from IBM suggestion, and the findings would enable the distribution industry to approach target consumers with their products, especially high value goods. 'Shopping advisor' is considered to the most effective. In order to apply to the other field of the distribution industry business, which utilizes AI technology, it should be accompanied by additional empirical data analysis should be undertaken.
Kim, Heeyoung;Hong, Hotak;Ryu, Gihwan;Kim, Dongmin
International Journal of Advanced Culture Technology
/
v.9
no.2
/
pp.100-105
/
2021
Contactless service is rapidly emerging as a new growth strategy due to consumers who are reluctant to the face-to-face situation in the global pandemic of coronavirus disease 2019 (COVID-19), and various technologies are being developed to support the fast-growing contactless service market. In particular, the restaurant industry is one of the most desperate industrial fields requiring technologies for contactless service, and the representative technical case should be a kiosk, which has the advantage of reducing labor costs for the restaurant owners and provides psychological relaxation and satisfaction to the customer. In this paper, we propose a solution to the restaurant's store operation through the unmanned kiosk using a state-of-the-art artificial intelligence (AI) technology of image recognition. Especially, for the products that do not have barcodes in bakeries, fresh foods (fruits, vegetables, etc.), and autonomous restaurants on highways, which cause increased labor costs and many hassles, our proposed system should be very useful. The proposed system recognizes products without barcodes on the ground of image-based AI algorithm technology and makes automatic payments. To test the proposed system feasibility, we established an AI vision system using a commercial camera and conducted an image recognition test by training object detection AI models using donut images. The proposed system has a self-learning system with mismatched information in operation. The self-learning AI technology allows us to upgrade the recognition performance continuously. We proposed a fully automated payment system with AI vision technology and showed system feasibility by the performance test. The system realizes contactless service for self-checkout in the restaurant business area and improves the cost-saving in managing human resources.
In a society full of knowledge and information, digital literacy and artificial intelligence (AI) education that can utilize AI technology is needed to solve numerous everyday problems based on computational thinking. In this study, data-centered AI education was conducted while teaching computer programming to non-computer programming students at universities, and the correlation between major factors related to academic performance was analyzed in addition to student satisfaction surveys. The results indicated that there was a strong correlation between grades and problem-solving ability-based tasks, and learning satisfaction. Multiple regression analysis also showed a significant effect on grades (F=225.859, p<0.001), and student satisfaction was high. The non-computer programming students were also able to understand the importance of data and the concept of AI models, focusing on specific examples of project types, and confirmed that they could use AI smoothly in their fields of interest. If further cases of AI education are explored and students' AI education is activated, it will be possible to suggest its direction that can collaborate with experts through interest in AI technology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.