• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.029 seconds

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

A Study on the Development of DGA based on Deep Learning (Deep Learning 기반의 DGA 개발에 대한 연구)

  • Park, Jae-Gyun;Choi, Eun-Soo;Kim, Byung-June;Zhang, Pan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.18-28
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.

Convolutional GRU and Attention based Fall Detection Integrating with Human Body Keypoints and DensePose

  • Yi Zheng;Cunyi Liao;Ruifeng Xiao;Qiang He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2782-2804
    • /
    • 2024
  • The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.

Time Series Crime Prediction Using a Federated Machine Learning Model

  • Salam, Mustafa Abdul;Taha, Sanaa;Ramadan, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.119-130
    • /
    • 2022
  • Crime is a common social problem that affects the quality of life. As the number of crimes increases, it is necessary to build a model to predict the number of crimes that may occur in a given period, identify the characteristics of a person who may commit a particular crime, and identify places where a particular crime may occur. Data privacy is the main challenge that organizations face when building this type of predictive models. Federated learning (FL) is a promising approach that overcomes data security and privacy challenges, as it enables organizations to build a machine learning model based on distributed datasets without sharing raw data or violating data privacy. In this paper, a federated long short- term memory (LSTM) model is proposed and compared with a traditional LSTM model. Proposed model is developed using TensorFlow Federated (TFF) and the Keras API to predict the number of crimes. The proposed model is applied on the Boston crime dataset. The proposed model's parameters are fine tuned to obtain minimum loss and maximum accuracy. The proposed federated LSTM model is compared with the traditional LSTM model and found that the federated LSTM model achieved lower loss, better accuracy, and higher training time than the traditional LSTM model.

A Digital Twin Software Development Framework based on Computing Load Estimation DNN Model (컴퓨팅 부하 예측 DNN 모델 기반 디지털 트윈 소프트웨어 개발 프레임워크)

  • Kim, Dongyeon;Yun, Seongjin;Kim, Won-Tae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.368-376
    • /
    • 2021
  • Artificial intelligence clouds help to efficiently develop the autonomous things integrating artificial intelligence technologies and control technologies by sharing the learned models and providing the execution environments. The existing autonomous things development technologies only take into account for the accuracy of artificial intelligence models at the cost of the increment of the complexity of the models including the raise up of the number of the hidden layers and the kernels, and they consequently require a large amount of computation. Since resource-constrained computing environments, could not provide sufficient computing resources for the complex models, they make the autonomous things violate time criticality. In this paper, we propose a digital twin software development framework that selects artificial intelligence models optimized for the computing environments. The proposed framework uses a load estimation DNN model to select the optimal model for the specific computing environments by predicting the load of the artificial intelligence models with digital twin data so that the proposed framework develops the control software. The proposed load estimation DNN model shows up to 20% of error rate compared to the formula-based load estimation scheme by means of the representative CNN models based experiments.

Field Applicability Study of Hull Crack Detection Based on Artificial Intelligence (인공지능 기반 선체 균열 탐지 현장 적용성 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.192-199
    • /
    • 2022
  • With the advent of autonomous ships, it is emerging as one of the very important issues not only to operate with a minimum crew or unmanned ships, but also to secure the safety of ships to prevent marine accidents. On-site inspection of the hull is mainly performed by the inspector's visual inspection, and video information is recorded using a small camera if necessary. However, due to the shortage of inspection personnel, time and space constraints, and the pandemic situation, the necessity of introducing an automated inspection system using artificial intelligence and remote inspection is becoming more important. Furthermore, research on hardware and software that enables the automated inspection system to operate normally even under the harsh environmental conditions of a ship is absolutely necessary. For automated inspection systems, it is important to review artificial intelligence technologies and equipment that can perform a variety of hull failure detection and classification. To address this, it is important to classify the hull failure. Based on various guidelines and expert opinions, we divided them into 6 types(Crack, Corrosion, Pitting, Deformation, Indent, Others). It was decided to apply object detection technology to cracks of hull failure. After that, YOLOv5 was decided as an artificial intelligence model suitable for survey and a common hull crack dataset was trained. Based on the performance results, it aims to present the possibility of applying artificial intelligence in the field by determining and testing the equipment required for survey.

Gated Recurrent Unit based Prefetching for Graph Processing (그래프 프로세싱을 위한 GRU 기반 프리페칭)

  • Shivani Jadhav;Farman Ullah;Jeong Eun Nah;Su-Kyung Yoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.6-10
    • /
    • 2023
  • High-potential data can be predicted and stored in the cache to prevent cache misses, thus reducing the processor's request and wait times. As a result, the processor can work non-stop, hiding memory latency. By utilizing the temporal/spatial locality of memory access, the prefetcher introduced to improve the performance of these computers predicts the following memory address will be accessed. We propose a prefetcher that applies the GRU model, which is advantageous for handling time series data. Display the currently accessed address in binary and use it as training data to train the Gated Recurrent Unit model based on the difference (delta) between consecutive memory accesses. Finally, using a GRU model with learned memory access patterns, the proposed data prefetcher predicts the memory address to be accessed next. We have compared the model with the multi-layer perceptron, but our prefetcher showed better results than the Multi-Layer Perceptron.

  • PDF

Development of deep autoencoder-based anomaly detection system for HANARO

  • Seunghyoung Ryu;Byoungil Jeon ;Hogeon Seo ;Minwoo Lee;Jin-Won Shin;Yonggyun Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.475-483
    • /
    • 2023
  • The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.

Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model

  • Khorrami, Rouhollah;Derakhshani, Ali
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-139
    • /
    • 2019
  • Available methods to determine the ultimate bearing capacity of shallow foundations may not be accurate enough owing to the complicated failure mechanism and diversity of the underlying soils. Accordingly, applying new methods of artificial intelligence can improve the prediction of the ultimate bearing capacity. The M5' model tree and the genetic programming are two robust artificial intelligence methods used for prediction purposes. The model tree is able to categorize the data and present linear models while genetic programming can give nonlinear models. In this study, a combination of these methods, called the M5'-GP approach, is employed to predict the ultimate bearing capacity of the shallow foundations, so that the advantages of both methods are exploited, simultaneously. Factors governing the bearing capacity of the shallow foundations, including width of the foundation (B), embedment depth of the foundation (D), length of the foundation (L), effective unit weight of the soil (${\gamma}$) and internal friction angle of the soil (${\varphi}$) are considered for modeling. To develop the new model, experimental data of large and small-scale tests were collected from the literature. Evaluation of the new model by statistical indices reveals its better performance in contrast to both traditional and recent approaches. Moreover, sensitivity analysis of the proposed model indicates the significance of various predictors. Additionally, it is inferred that the new model compares favorably with different models presented by various researchers based on a comprehensive ranking system.