• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.033 seconds

Railroad Surface Defect Segmentation Using a Modified Fully Convolutional Network

  • Kim, Hyeonho;Lee, Suchul;Han, Seokmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4763-4775
    • /
    • 2020
  • This research aims to develop a deep learning-based method that automatically detects and segments the defects on railroad surfaces to reduce the cost of visual inspection of the railroad. We developed our segmentation model by modifying a fully convolutional network model [1], a well-known segmentation model used for machine learning, to detect and segment railroad surface defects. The data used in this research are images of the railroad surface with one or more defect regions. Railroad images were cropped to a suitable size, considering the long height and relatively narrow width of the images. They were also normalized based on the variance and mean of the data images. Using these images, the suggested model was trained to segment the defect regions. The proposed method showed promising results in the segmentation of defects. We consider that the proposed method can facilitate decision-making about railroad maintenance, and potentially be applied for other analyses.

Prediction Model of Real Estate ROI with the LSTM Model based on AI and Bigdata

  • Lee, Jeong-hyun;Kim, Hoo-bin;Shim, Gyo-eon
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Across the world, 'housing' comprises a significant portion of wealth and assets. For this reason, fluctuations in real estate prices are highly sensitive issues to individual households. In Korea, housing prices have steadily increased over the years, and thus many Koreans view the real estate market as an effective channel for their investments. However, if one purchases a real estate property for the purpose of investing, then there are several risks involved when prices begin to fluctuate. The purpose of this study is to design a real estate price 'return rate' prediction model to help mitigate the risks involved with real estate investments and promote reasonable real estate purchases. Various approaches are explored to develop a model capable of predicting real estate prices based on an understanding of the immovability of the real estate market. This study employs the LSTM method, which is based on artificial intelligence and deep learning, to predict real estate prices and validate the model. LSTM networks are based on recurrent neural networks (RNN) but add cell states (which act as a type of conveyer belt) to the hidden states. LSTM networks are able to obtain cell states and hidden states in a recursive manner. Data on the actual trading prices of apartments in autonomous districts between January 2006 and December 2019 are collected from the Actual Trading Price Disclosure System of the Ministry of Land, Infrastructure and Transport (MOLIT). Additionally, basic data on apartments and commercial buildings are collected from the Public Data Portal and Seoul Metropolitan Government's data portal. The collected actual trading price data are scaled to monthly average trading amounts, and each data entry is pre-processed according to address to produce 168 data entries. An LSTM model for return rate prediction is prepared based on a time series dataset where the training period is set as April 2015~August 2017 (29 months), the validation period is set as September 2017~September 2018 (13 months), and the test period is set as December 2018~December 2019 (13 months). The results of the return rate prediction study are as follows. First, the model achieved a prediction similarity level of almost 76%. After collecting time series data and preparing the final prediction model, it was confirmed that 76% of models could be achieved. All in all, the results demonstrate the reliability of the LSTM-based model for return rate prediction.

Parameterization of the Company's Business Model for Machine Learning-Based Marketing Stress Testing

  • Menkova, Krystyna;Zozulov, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.318-326
    • /
    • 2022
  • Marketing stress testing is a new method of identifying the company's strengths and weaknesses in a turbulent environment. Technically, this is a complex procedure, so it involves artificial intelligence and machine learning. The main problem is currently the development of methodological approaches to the development of the company's digital model, which will provide a framework for machine learning. The aim of the study was to identify and develop an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. This aim provided the company's activities to be considered as a set of elements (business processes, products) and factors that affect them (marketing environment). The article proposes an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. The proposed approach includes four main elements that are subject to parameterization: elements of the company's internal environment, factors of the marketing environment, the company' core competency and factors impacting the company. Matrices for evaluating the results of the work of expert groups to determine the degree of influence of the marketing environment factors were developed. It is proposed to distinguish between mega-level, macro-level, meso-level and micro-level factors depending on the degree of impact on the company. The methodological limitation of the study is that it involves the modelling method as the only one possible at this stage of the study. The implementation limitation is that the proposed approach can only be used if the company plans to use machine learning for marketing stress testing.

Evaluations of AI-based malicious PowerShell detection with feature optimizations

  • Song, Jihyeon;Kim, Jungtae;Choi, Sunoh;Kim, Jonghyun;Kim, Ikkyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.549-560
    • /
    • 2021
  • Cyberattacks are often difficult to identify with traditional signature-based detection, because attackers continually find ways to bypass the detection methods. Therefore, researchers have introduced artificial intelligence (AI) technology for cybersecurity analysis to detect malicious PowerShell scripts. In this paper, we propose a feature optimization technique for AI-based approaches to enhance the accuracy of malicious PowerShell script detection. We statically analyze the PowerShell script and preprocess it with a method based on the tokens and abstract syntax tree (AST) for feature selection. Here, tokens and AST represent the vocabulary and structure of the PowerShell script, respectively. Performance evaluations with optimized features yield detection rates of 98% in both machine learning (ML) and deep learning (DL) experiments. Among them, the ML model with the 3-gram of selected five tokens and the DL model with experiments based on the AST 3-gram deliver the best performance.

Study on Prediction of Similar Typhoons through Neural Network Optimization (뉴럴 네트워크의 최적화에 따른 유사태풍 예측에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, In-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.427-434
    • /
    • 2019
  • Artificial intelligence (AI)-aided research currently enjoys active use in a wide array of fields thanks to the rapid development of computing capability and the use of Big Data. Until now, forecasting methods were primarily based on physics models and statistical studies. Today, AI is utilized in disaster prevention forecasts by studying the relationships between physical factors and their characteristics. Current studies also involve combining AI and physics models to supplement the strengths and weaknesses of each aspect. However, prior to these studies, an optimization algorithm for the AI model should be developed and its applicability should be studied. This study aimed to improve the forecast performance by constructing a model for neural network optimization. An artificial neural network (ANN) followed the ever-changing path of a typhoon to produce similar typhoon predictions, while the optimization achieved by the neural network algorithm was examined by evaluating the activation function, hidden layer composition, and dropouts. A learning and test dataset was constructed from the available digital data of one typhoon that affected Korea throughout the record period (1951-2018). As a result of neural network optimization, assessments showed a higher degree of forecast accuracy.

Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal (초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류)

  • Im, Rae-Muk;Sin, Dong-Hwan;Kim, Deok-Yeong;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF

A Study on the Emoticon Extraction based on Facial Expression Recognition using Deep Learning Technique (딥 러닝 기술 이용한 얼굴 표정 인식에 따른 이모티콘 추출 연구)

  • Jeong, Bong-Jae;Zhang, Fan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.2
    • /
    • pp.43-53
    • /
    • 2017
  • In this paper, the pattern of extracting the same expression is proposed by using the Android intelligent device to identify the facial expression. The understanding and expression of expression are very important to human computer interaction, and the technology to identify human expressions is very popular. Instead of searching for the emoticons that users often use, you can identify facial expressions with acamera, which is a useful technique that can be used now. This thesis puts forward the technology of the third data is available on the website of the set, use the content to improve the infrastructure of the facial expression recognition accuracy, in order to improve the synthesis of neural network algorithm, making the facial expression recognition model, the user's facial expressions and similar e xpressions, reached 66%.It doesn't need to search for emoticons. If you use the camera to recognize the expression, itwill appear emoticons immediately. So this service is the emoticons used when people send messages to others, and it can feel a lot of convenience. In countless emoticons, there is no need to find emoticons, which is an increasing trend in deep learning. So we need to use more suitable algorithm for expression recognition, and then improve accuracy.

J48 and ADTree for forecast of leaving of hospitals

  • Halim, Faisal;Muttaqin, Rizal
    • Korean Journal of Artificial Intelligence
    • /
    • v.4 no.1
    • /
    • pp.11-13
    • /
    • 2016
  • These days, medical technology has been developed rapidly to meet desire of living healthy life. Average lifespan was extended to let people see a doctor because of many reasons. This study has shown rate of leaving of hospitals to investigate the rate of not only department of surgery but also department of internal medicine. Linear model, tree, classification rule, association and algorithm of data mining were used. This study investigated by using J48 and AD tree of decision-making tree In this study, J48 and AD tree of decision-making tree of data mining were used to investigate based on result of both data. Both algorithms were found to have similar performance. Both algorithms were not equivalent to require detailed experiment. Collect more experimental data in the future to apply from various points of view. Development of medical technology gives dream, hope and pleasure. The ones who suffer from incurable diseases need developed medical technology. Environment being similar to the reality shall be made to experiment exactly to investigate data carefully and to let the ones of various ages visit hospital and to increase survival rate.

A Reinforcement Learning Framework for Autonomous Cell Activation and Customized Energy-Efficient Resource Allocation in C-RANs

  • Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3821-3841
    • /
    • 2019
  • Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.

IoB Based Scenario Application of Health and Medical AI Platform (보건의료 AI 플랫폼의 IoB 기반 시나리오 적용)

  • Eun-Suab, Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1283-1292
    • /
    • 2022
  • At present, several artificial intelligence projects in the healthcare and medical field are competing with each other, and the interfaces between the systems lack unified specifications. Thus, this study presents an artificial intelligence platform for healthcare and medical fields which adopts the deep learning technology to provide algorithms, models and service support for the health and medical enterprise applications. The suggested platform can provide a large number of heterogeneous data processing, intelligent services, model managements, typical application scenarios, and other services for different types of business. In connection with the suggested platform application, we represents a medical service which is corresponding to the trusted and comprehensible tracking and analyzing patient behavior system for Health and Medical treatment using Internet of Behavior concept.