• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.034 seconds

A Study on Artificial Intelligence Based Business Models of Media Firms

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.56-67
    • /
    • 2019
  • The aim of this study is to develop Artificial Intelligence (AI) based business models of media firms. We define AI and discuss 'AI activity model'. The practices of the efficiency model are home equipment-based personalization and media content recommendation. The practices of the expert model are media content commissioning, content rights negotiation, copyright infringement, and promotion. The practices of the effectiveness model are photo & video auto-tagging and auto subtitling & simultaneous translation. The practices of the innovation model are content script creation and metadata management. The related use cases from 2012 to 2017 are introduced along the four activity models of AI. In conclusion, we propose for media companies to fully utilize the AI for transforming from traditional to successful digital media firms.

Development of Integrated Security Control Service Model based on Artificial Intelligence Technology (인공지능 기술기반의 통합보안관제 서비스모델 개발방안)

  • Oh, Young-Tack;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.108-116
    • /
    • 2019
  • In this paper, we propose a method to apply artificial intelligence technology efficiently to integrated security control technology. In other words, by applying machine learning learning to artificial intelligence based on big data collected in integrated security control system, cyber attacks are detected and appropriately responded. As technology develops, many large capacity Is limited to analyzing individual logs. The analysis method should also be applied to the integrated security control more quickly because it needs to correlate the logs of various heterogeneous security devices rather than one log. We have newly proposed an integrated security service model based on artificial intelligence, which analyzes and responds to these behaviors gradually evolves and matures through effective learning methods. We sought a solution to the key problems expected in the proposed model. And we developed a learning method based on normal behavior based learning model to strengthen the response ability against unidentified abnormal behavior threat. In addition, future research directions for security management that can efficiently support analysis and correspondence of security personnel through proposed security service model are suggested.

Development of Artificial Intelligence Literacy Education Program for Teachers and Verification of the Effectiveness of Interest in Artificial Intelligence Convergence Education

  • Kim, Kwihoon;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.13-21
    • /
    • 2021
  • In this paper, we developed an artificial intelligence literacy education program to strengthen the AI convergence education capacity and cultivate literacy of in-service elementary and secondary teachers, and verify the effect on the degree of interest in artificial intelligence convergence education by applying it. As a test tool, the level of interest questionnaire scale developed by George, Hall & Stiegelbauer(2006) was used based on the center of interest acceptance model of Hall et al.(1979). As a result of analyzing the degree of interest in artificial intelligence convergence education before and after the application of the artificial intelligence literacy education program, the types of non-users were found both before and after the application of the program, but the overall degree of interest increased compared to before application. As a result of analyzing the satisfaction result of the artificial intelligence literacy education program, a response that was satisfied in most areas was derived, but there was a tendency to be somewhat less satisfied with the case of convergence and application of artificial intelligence and industry.

News Article Identification Methods with Fact-Checking Guideline on Artificial Intelligence & Bigdata

  • Kang, Jangmook;Lee, Sangwon
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.352-359
    • /
    • 2021
  • The purpose of this study is to design and build fake news discrimination systems and methods using fact-checking guidelines. In other words, the main content of this study is the system for identifying fake news using Artificial Intelligence -based Fact-checking guidelines. Specifically planned guidelines are needed to determine fake news that is prevalent these days, and the purpose of these guidelines is fact-checking. Identifying fake news immediately after seeing a huge amount of news is inefficient in handling and ineffective in handling. For this reason, we would like to design a fake news identification system using the fact-checking guidelines to create guidelines based on pattern analysis against fake news and real news data. The model will monitor the fact-checking guideline model modeled to determine the Fact-checking target within the news article and news articles shared on social networking service sites. Through this, the model is reflected in the fact-checking guideline model by analyzing news monitoring devices that select suspicious news articles based on their user responses. The core of this research model is a fake news identification device that determines the authenticity of this suspected news article. So, we propose news article identification methods with fact-checking guideline on Artificial Intelligence & Bigdata. This study will help news subscribers determine news that is unclear in its authenticity.

A Design-Based Research on Application of Artificial Intelligence(AI) Teaching-Learning Model in Elementary School

  • Kim, Wooyeol
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.201-208
    • /
    • 2021
  • Recently, artificial intelligence(AI) has been used throughout society, and social interest in it is increasing. Accordingly, the necessity of AI education is becoming a big topic in the education field. As a response to this trend, the Korean education authorities have also announced plans for AI education, and various studies have been performed in academic field to revitalize AI education in the future. However, the curriculum research on what differentiates AI education from existing SW education and what and how to train AI is still in its infancy. In this paper, Therefore, we focused on the experiences of elementary school students in solving problems in their own lives, and developed a teaching-learning model based on design-based research so that students can design a problem-solving process and experience the process of feedback. We applied the developed teaching-learning model to the problem-solving process and confirmed that it increased students' understanding and satisfaction with AI education.

A Study on Explainable Artificial Intelligence-based Sentimental Analysis System Model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.142-151
    • /
    • 2022
  • In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.

Guidelines for Data Construction when Estimating Traffic Volume based on Artificial Intelligence using Drone Images (드론영상과 인공지능 기반 교통량 추정을 위한 데이터 구축 가이드라인 도출 연구)

  • Han, Dongkwon;Kim, Doopyo;Kim, Sungbo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.147-157
    • /
    • 2022
  • Recently, many studies have been conducted to analyze traffic or object recognition that classifies vehicles through artificial intelligence-based prediction models using CCTV (Closed Circuit TeleVision)or drone images. In order to develop an object recognition deep learning model for accurate traffic estimation, systematic data construction is required, and related standardized guidelines are insufficient. In this study, previous studies were analyzed to derive guidelines for establishing artificial intelligence-based training data for traffic estimation using drone images, and business reports or training data for artificial intelligence and quality management guidelines were referenced. The guidelines for data construction are divided into data acquisition, preprocessing, and validation, and guidelines for notice and evaluation index for each item are presented. The guidelines for data construction aims to provide assistance in the development of a robust and generalized artificial intelligence model in analyzing the estimation of road traffic based on drone image artificial intelligence.

Design of High School Software AI Education Model in IoT Environment (사물인터넷 환경에서의 고등학교 SW·AI 교육 모델 설계)

  • Keun-Ho Lee;JungSoo Han
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2023
  • The evolution of new digital technologies is progressing rapidly. In particular, many changes in software and artificial intelligence are progressing rapidly in the field of education. The Ministry of Education is planning an educational program by linking software and artificial intelligence regular curriculum. Before applying it to regular subjects, various software and artificial intelligence related experience camps are being promoted. This study aims to construct an educational model for software and artificial intelligence education programs for high school students based on new digital technology. By expanding and distributing software and artificial intelligence education, we aim to enhance the basic capabilities of software and artificial intelligence for high school students. I would like to define the concept of software and artificial intelligence in high school and propose a model that links software and artificial intelligence learning factors to the regular curriculum.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

A Study on Artificial Intelligence Learning Data Generation Method for Structural Member Recognition (구조부재 인식을 위한 인공지능 학습데이터 생성방법 연구)

  • Yoon, Jeong-Hyun;Kim, Si-Uk;Kim, Chee-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.229-230
    • /
    • 2022
  • With the development of digital technology, construction companies at home and abroad are in the process of computerizing work and site information for the purpose of improving work efficiency. To this end, various technologies such as BIM, digital twin, and AI-based safety management have been developed, but the accuracy and completeness of the related technologies are insufficient to be applied to the field. In this paper, the learning data that has undergone a pre-processing process optimized for recognition of construction information based on structural members is trained on an existing artificial intelligence model to improve recognition accuracy and evaluate its effectiveness. The artificial intelligence model optimized for the structural member created through this study will be used as a base technology for the technology that needs to confirm the safety of the structure in the future.

  • PDF