Journal of the Korea Society of Computer and Information
/
v.25
no.3
/
pp.27-32
/
2020
In this paper, we propose an algorithm to measure the accumulated status of scrap boxes where metal scraps are accumulated. The accumulated status measuring is defined as a multi-class classification problem, and the method with deep learning classify the accumulated status using only the scrap box image. The learning was conducted by the Transfer Learning method, and the deep learning model was NASNet-A. In order to improve the accuracy of the model, we combined the Random Forest classifier with the trained NASNet-A and improved the model through post-processing. Testing with 4,195 data collected in the field showed 55% accuracy when only NASNet-A was applied, and the proposed method, NASNet with Random Forest, improved the accuracy by 88%.
This study systematically examined the influence of preservice teachers' self-efficacy and AI anxiety, on the intention to use AI programs 'knock-knock! mathematics expedition' in mathematics lessons based on a technology acceptance model. The research model was established with variables including self-efficacy, AI anxiety, perceived ease of use, perceived usefulness, and intention of use from 254 pre-service teachers. The structural relationships and direct and indirect effects between these variables were examined through structural equation modeling. The results indicated that self-efficacy significantly affected perceived ease of use, perceived usefulness, and intention to use. In contrast, AI anxiety did not significantly influence perceived ease of use and perceived usefulness. Perceived ease of use significantly affected perceived usefulness and intention to use and perceived usefulness significantly affected intention to use. The findings offer insights and strategies for encouraging the use of 'knock-knock! mathematics expedition' by preservice teachers in mathematics lessons.
The Fourth Industrial Revolution is bringing about great changes in many industrial fields, and among them, active research is being conducted on convergence technology using artificial intelligence. Among them, the demand is increasing day by day in the field of object recognition using artificial intelligence and digital transformation using recognition results. In this paper, we proposed an optimal learning model construction method to accurately recognize letters, symbols, and lines in images and save the recognition results as files in a standardized format so that they can be used in simulations. In order to recognize letters, symbols, and lines in images, the characteristics of each recognition target were analyzed and the optimal recognition technique was selected. Next, a method to build an optimal learning model was proposed to improve the recognition rate for each recognition target. The recognition results were confirmed by setting different order and weights for character, symbol, and line recognition, and a plan for recognition post-processing was also prepared. The final recognition results were saved in a standardized format that can be used for various processing such as simulation. The excellent performance of building the optimal learning model proposed in this paper was confirmed through experiments.
Using a cloud-based vertex AI platform that can develop an artificial intelligence learning model without coding, this study easily developed an artificial intelligence learning model by the non-professional general public and confirmed its clinical applicability. Nine dental diseases and 2,999 root disease X-ray images released on the Kaggle site were used for the learning data, and learning, verification, and test data images were randomly classified. Image classification and multi-label learning were performed through hyper-parameter tuning work using a learning pipeline in vertex AI's basic learning model workflow. As a result of performing AutoML(Automated Machine Learning), AUC(Area Under Curve) was found to be 0.967, precision was 95.6%, and reproduction rate was 95.2%. It was confirmed that the learned artificial intelligence model was sufficient for clinical diagnosis.
Bicycle- or bike-sharing systems (BSSs) have received increasing attention as a secondary transportation mode due to their advantages, for example, accessibility, prevention of air pollution, and health promotion. However, in BSSs, due to bias in bike demands, the bike rebalancing problem should be solved. Various methods have been proposed to solve this problem; however, it is difficult to apply such methods to small cities because bike demand is sparse, and there are many practical issues to solve. Thus, we propose a demand prediction model using multiple classifiers, time grouping, categorization, weather analysis, and station correlation information. In addition, we analyze real-world relocation data by relocation managers and propose a relocation algorithm based on the analytical results to solve the bike rebalancing problem. The proposed system is compared experimentally with the results obtained by the real relocation managers.
The emergence of generative hyperscale artificial intelligence (AI) has enabled new services, such as image-generating AI and conversational AI based on large language models. Such services likely lead to the influx of numerous users, who cannot be handled using conventional AI models. Furthermore, the exponential increase in training data, computations, and high user demand of AI models has led to intensive hardware resource consumption, highlighting the need to develop domain-specific semiconductors for hyperscale AI. In this technical report, we describe development trends in technologies for hyperscale AI processors pursued by domestic and foreign semiconductor companies, such as NVIDIA, Graphcore, Tesla, Google, Meta, SAPEON, FuriosaAI, and Rebellions.
Yejin Lee;Youngjin Jang;Tae-il Kim;Sung-Won Choi;Harksoo Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.354-359
/
2022
에세이 자동 평가는 주어진 에세이를 읽고 자동으로 평가하는 작업이다. 본 논문에서는 효과적인 에세이 자동 평가 모델을 위해 Argument Mining 작업을 사용하여 에세이의 논증 구조가 반영된 에세이 표현을 만들고, 에세이의 평가 항목별 표현을 학습하는 방법을 제안한다. 실험을 통해 제안하는 에세이 표현이 사전 학습 언어 모델로 얻은 표현보다 우수함을 입증했으며, 에세이 평가를 위해 평가 항목별로 다른 표현을 학습하는 것이 보다 효과적임을 보였다. 최종 제안 모델의 성능은 QWK 기준으로 0.543에서 0.627까지 향상되어 사람의 평가와 상당히 일치한다.
최근 사물인터넷(IoT) 기기가 활성화됨에 따라 웨어러블 장치 환경에서 장기간 모니터링 및 수집이 가능해짐에 따라 생체 신호 처리 및 ECG 분석 연구가 활성화되고 있다. 그러나, ECG 데이터는 부정맥 비트의 불규칙적인 발생으로 인한 클래스 불균형 문제와 근육의 떨림 및 신호의 미약등과 같은 잡음으로 인해 낮은 신호 품질이 발생할 수 있으며 훈련용 공개데이터 세트가 작다는 특징을 갖는다. 이 논문에서는 ECG 1D 신호를 2D 스펙트로그램 이미지로 변환하여 잡음의 영향을 최소화하고 전이학습과 메타학습의 장점을 결합하여 클래스 불균형 문제와 소수의 데이터에서도 빠른 학습이 가능하다는 특징을 갖는다. 따라서, 이 논문에서는 ECG 스펙트럼 이미지를 사용하여 2D-CNN 메타-전이 학습 기반 부정맥 분류 기법을 제안한다.
The mechanical behavior of the steel tube encased high-strength concrete (STHC) composite walls under constant axial load and cyclically increasing lateral load was studied. Conclusions are drawn based on experimental observations, grey evolutionary algorithm and finite element (FE) simulations. The use of steel tube wall panels improved the load capacity and ductility of the specimens. STHC composite walls withstand more load cycles and show more stable hysteresis performance than conventional high strength concrete (HSC) walls. After the maximum load, the bearing capacity of the STHC composite wall was gradually reduced, and the wall did not collapse under the influence of the steel pipe. For analysis of the bending capacity of STHC composite walls based on artificial intelligence tools, an analysis model is proposed that takes into account the limiting effect of steel pipes. The results of this model agree well with the test results, indicating that the model can be used to predict the bearing capacity of STHC composite walls. Based on a reasonable material constitutive model and the limiting effect of steel pipes, a finite element model of the STHC composite wall was created. The finite elements agree well with the experimental results in terms of hysteresis curve, load-deformation curve and peak load.
Im, Jung-Ju;Kim, Tae-Wan;Lim, Ji-Seoup;Kim, Jun-Ho;Yoo, Tae-Yong;Lee, Won Joo
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.29-36
/
2022
In this paper, we propose an efficient agricultural products price prediction model based on dataset which provided in DACON. This model is XGBoost and CatBoost, and as an algorithm of the Gradient Boosting series, the average accuracy and execution time are superior to the existing Logistic Regression and Random Forest. Based on these advantages, we design a machine learning model that predicts prices 1 week, 2 weeks, and 4 weeks from the previous prices of agricultural products. The XGBoost model can derive the best performance by adjusting hyperparameters using the XGBoost Regressor library, which is a regression model. The implemented model is verified using the API provided by DACON, and performance evaluation is performed for each model. Because XGBoost conducts its own overfitting regulation, it derives excellent performance despite a small dataset, but it was found that the performance was lower than LGBM in terms of temporal performance such as learning time and prediction time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.