• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.026 seconds

Comparative Study of AI Models for Reliability Function Estimation in NPP Digital I&C System Failure Prediction (원전 디지털 I&C 계통 고장예측을 위한 신뢰도 함수 추정 인공지능 모델 비교연구)

  • DaeYoung Lee;JeongHun Lee;SeungHyeok Yang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.1-10
    • /
    • 2023
  • The nuclear power plant(NPP)'s Instrumentation and Control(I&C) system periodically conducts integrity checks for the maintenance of self-diagnostic function during normal operation. Additionally, it performs functionality and performance checks during planned preventive maintenance periods. However, there is a need for technological development to diagnose failures and prevent accidents in advance. In this paper, we studied methods for estimating the reliability function by utilizing environmental data and self-diagnostic data of the I&C equipment. To obtain failure data, we assumed probability distributions for component features of the I&C equipment and generated virtual failure data. Using this failure data, we estimated the reliability function using representative artificial intelligence(AI) models used in survival analysis(DeepSurve, DeepHit). And we also estimated the reliability function through the Cox regression model of the traditional semi-parametric method. We confirmed the feasibility through the residual lifetime calculations based on environmental and diagnostic data.

Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification (그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1269-1276
    • /
    • 2023
  • Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.

Retained Message Delivery Scheme utilizing Reinforcement Learning in MQTT-based IoT Networks (MQTT 기반 IoT 네트워크에서 강화학습을 활용한 Retained 메시지 전송 방법)

  • Yeunwoong Kyung;Tae-Kook Kim;Youngjun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.131-135
    • /
    • 2024
  • In the MQTT protocol, if the retained flag of a message published by a publisher is set, the message is stored in the broker as a retained message. When a new subscriber performs a subscribe, the broker immediately sends the retained message. This allows the new subscriber to perform updates on the current state via the retained message without waiting for new messages from the publisher. However, sending retained messages can become a traffic overhead if new messages are frequently published by the publisher. This situation could be considered an overhead when new subscribers frequently subscribe. Therefore, in this paper, we propose a retained message delivery scheme by considering the characteristics of the published messages. We model the delivery and waiting actions to new subscribers from the perspective of the broker using reinforcement learning, and determine the optimal policy through Q learning algorithm. Through performance analysis, we confirm that the proposed method shows improved performance compared to existing methods.

A study on rethinking EDA in digital transformation era (DX 전환 환경에서 EDA에 대한 재고찰)

  • Seoung-gon Ko
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.87-102
    • /
    • 2024
  • Digital transformation refers to the process by which a company or organization changes or innovates its existing business model or sales activities using digital technology. This requires the use of various digital technologies - cloud computing, IoT, artificial intelligence, etc. - to strengthen competitiveness in the market, improve customer experience, and discover new businesses. In addition, in order to derive knowledge and insight about the market, customers, and production environment, it is necessary to select the right data, preprocess the data to an analyzable state, and establish the right process for systematic analysis suitable for the purpose. The usefulness of such digital data is determined by the importance of pre-processing and the correct application of exploratory data analysis (EDA), which is useful for information and hypothesis exploration and visualization of knowledge and insights. In this paper, we reexamine the philosophy and basic concepts of EDA and discuss key visualization information, information expression methods based on the grammar of graphics, and the ACCENT principle, which is the final visualization review standard, for effective visualization.

A method for metadata extraction from a collection of records using Named Entity Recognition in Natural Language Processing (자연어 처리의 개체명 인식을 통한 기록집합체의 메타데이터 추출 방안)

  • Chiho Song
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.2
    • /
    • pp.65-88
    • /
    • 2024
  • This pilot study explores a method of extracting metadata values and descriptions from records using named entity recognition (NER), a technique in natural language processing (NLP), a subfield of artificial intelligence. The study focuses on handwritten records from the Guro Industrial Complex, produced during the 1960s and 1970s, comprising approximately 1,200 pages and 80,000 words. After the preprocessing process of the records, which included digitization, the study employed a publicly available language API based on Google's Bidirectional Encoder Representations from Transformers (BERT) language model to recognize entity names within the text. As a result, 173 names of people and 314 of organizations and institutions were extracted from the Guro Industrial Complex's past records. These extracted entities are expected to serve as direct search terms for accessing the contents of the records. Furthermore, the study identified challenges that arose when applying the theoretical methodology of NLP to real-world records consisting of semistructured text. It also presents potential solutions and implications to consider when addressing these issues.

Boot storm Reduction through Artificial Intelligence Driven System in Virtual Desktop Infrastructure

  • Heejin Lee;Taeyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose BRAIDS, a boot storm mitigation plan consisting of an AI-based VDI usage prediction system and a virtual machine boot scheduler system, to alleviate boot storms and improve service stability. Virtual Desktop Infrastructure (VDI) is an important technology for improving an organization's work productivity and increasing IT infrastructure efficiency. Boot storms that occur when multiple virtual desktops boot simultaneously cause poor performance and increased latency. Using the xgboost algorithm, existing VDI usage data is used to predict future VDI usage. In addition, it receives the predicted usage as input, defines a boot storm considering the hardware specifications of the VDI server and virtual machine, and provides a schedule to sequentially boot virtual machines to alleviate boot storms. Through the case study, the VDI usage prediction model showed high prediction accuracy and performance improvement, and it was confirmed that the boot storm phenomenon in the virtual desktop environment can be alleviated and IT infrastructure can be utilized efficiently through the virtual machine boot scheduler.

A Study on the Operational Planning Assist System for Ground Forces (지상군 작전계획 수립 보조 시스템 설계 연구)

  • Ikhyun Kim;Sunju Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2023
  • The military leader makes an operation plan to accomplish combat missions. The current doctrine for an operation planning requires the use of simple and clear procedures and methods that can be carried out with human effort under adverse conditions in the field. The work in the process of an operation planning can be said to be a series of decision-making, and the criteria for decision-making generally apply mission variables. However, detailed standards are not fixed as doctrine, but are creatively established and applied. However, for AI-based decision-making, it is necessary to formalize the criteria and the format used. This paper first aims to standardize various criteria and forms to present a method that can be used in a semi-automated assist system, and to seek a plan to artificialize it. To this end, mathematical models and decision-making methods established in the field of operations research were applied to improve efficiency.

  • PDF

Behavior Pattern Modeling based Game Bot detection (행동 패턴 모델을 이용한 게임 봇 검출 방법)

  • Park, Sang-Hyun;Jung, Hye-Wuk;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.422-427
    • /
    • 2010
  • Korean Game industry, especially MMORPG(Massively Multiplayer Online Game) has been rapidly expanding in these days. But As game industry is growing, lots of online game security incidents have also been increasing and getting prevailing. One of the most critical security incidents is 'Game Bots', which are programs to play MMORPG instead of human players. If player let the game bots play for them, they can get a lot of benefic game elements (experience points, items, etc.) without any effort, and it is considered unfair to other players. Plenty of game companies try to prevent bots, but it does not work well. In this paper, we propose a behavior pattern model for detecting bots. We analyzed behaviors of human players as well as bots and identified six game features to build the model to differentiate game bots from human players. Based on these features, we made a Naive Bayesian classifier to reasoning the game bot or not. To evaluated our method, we used 10 game bot data and 6 human Player data. As a result, we classify Game bot and human player with 88% accuracy.

Hiker Mobility Model and Mountain Distress Simulator for Location Estimation of Mountain Distress Victim (산악 조난자의 위치추정을 위한 이동성 모델 및 조난 시뮬레이터)

  • Kim, Hansol;Cho, Yongkyu;Jo, Changhyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • Currently police and fire departments use a Network/Wifi/GPS based emergency location positioning system established by mobile carriers to directly link with the device of the people who request the rescue to accurately position the expected location in the call area. However in the case of mountain rescue it is difficult to rescue the victim in golden time because the location of the search area cannot be limited when the victim is located in a radio shadow area of the mountain or the device power is off and this situation become worse if victim fail to report 911 by himself due to the injury. In this paper, we are expected to solve the previous problem by propose the mobile telecommunication forensic simulator consist of time series of cell information, human mobility model which include some general and specific features (age, gender, behavioral characteristics of victim, etc.) and intelligent infer system. The results of analysis appear in heatmap of polygons on the map based on the probability of the expected location information of the victim. With this technology we are expected to contribute to rapid and accurate lifesaving by reducing the search area of rescue team.

A Study on the Application of Virtual Space Design Using the Blended Education Method - A La Carte Model Based on the Creation of Infographic - (블렌디드 교육방식을 활용한 가상공간 디자인 적용에 관한 연구 -알 라 카르테 모델 (A La Carte) 인포그래픽 가상공간 제작을 중심으로-)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.279-284
    • /
    • 2022
  • As a study of the blended learning method on design education through the blended learning method, I would like to propose that more advanced learner-led customized design education is possible. Understanding in face-to-face classes and advantages in non-face-to-face classes can be supplemented in an appropriate way in remote classes. Advanced artificial intelligence and big data technology can provide personalized and subdivided learning materials and effective learning methods tailored to learners' levels and interests based on quantified data in design classes. In this paper, it was proposed to maximize the efficiency of the class by applying a method that exceeds the limitations of time and space through the proposal of the A La Carte model (A La Carte). It is a remote class that can be heard anytime, anywhere, and it is also possible to bridge the educational quality and educational gap provided to students living in underprivileged areas. As the goal of fostering creative convergence-type future talents, it is changing with a rapid technological development speed. It is necessary to adapt to the change in learning methods in line with this. An analysis of the infographic virtual space design and construction process through the A La Carte model (A La Carte) proposal was presented. Rather than simply acquiring knowledge, it is expected that knowledge can be sorted, distinguished, learned, and easily reborn with its own knowledge.