• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.028 seconds

Development of Evaluation Framework for Adopting of a Cloud-based Artificial Intelligence Platform (클라우드 기반 인공지능 플랫폼 도입 평가 프레임워크 개발)

  • Kwang-Kyu Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.136-141
    • /
    • 2023
  • Artificial intelligence is becoming a global hot topic and is being actively applied in various industrial fields. Not only is artificial intelligence being applied to industrial sites in an on-premises method, but cloud-based artificial intelligence platforms are expanding into "as a service" type. The purpose of this study is to develop and verify a measurement tool for an evaluation framework for the adoption of a cloud-based artificial intelligence platform and test the interrelationships of evaluation variables. To achieve this purpose, empirical testing was conducted to verify the hypothesis using an expanded technology acceptance model, and factors affecting the intention to adopt a cloud-based artificial intelligence platform were analyzed. The results of this study are intended to increase user awareness of cloud-based artificial intelligence platforms and help various industries adopt them through the evaluation framework.

  • PDF

Application of artificial intelligence-based technologies to the construction sites (이미지 기반 인공지능을 활용한 현장 적용성 연구)

  • Na, Seunguk;Heo, Seokjae;Roh, Youngsook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.225-226
    • /
    • 2022
  • The construction industry, which has a labour-intensive and conservative nature, is exclusive to adopt new technologies. However, the construction industry is viably introducing the 4th Industrial Revolution technologies represented by artificial intelligence, Internet of Things, robotics and unmanned transportation to promote change into a smart industry. An image-based artificial intelligence technology is a field of computer vision technology that refers to machines mimicking human visual recognition of objects from pictures or videos. The purpose of this article is to explore image-based artificial intelligence technologies which would be able to apply to the construction sites. In this study, we show two examples which is one for a construction waste classification model and another for cast in-situ anchor bolts defection detection model. Image-based intelligence technologies would be used for various measurement, classification, and detection works that occur in the construction projects.

  • PDF

A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors (핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상)

  • Kim, Hong Gon;Kim, Sodam;Kim, Hee-Wooong
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.

Artificial Intelligence for the Fourth Industrial Revolution

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1301-1306
    • /
    • 2018
  • Artificial intelligence is one of the key technologies of the Fourth Industrial Revolution. This paper introduces the diverse kinds of approaches to subjects that tackle diverse kinds of research fields such as model-based MS approach, deep neural network model, image edge detection approach, cross-layer optimization model, LSSVM approach, screen design approach, CPU-GPU hybrid approach and so on. The research on Superintelligence and superconnection for IoT and big data is also described such as 'superintelligence-based systems and infrastructures', 'superconnection-based IoT and big data systems', 'analysis of IoT-based data and big data', 'infrastructure design for IoT and big data', 'artificial intelligence applications', and 'superconnection-based IoT devices'.

Design of Artificial Intelligence Course for Humanities and Social Sciences Majors

  • KyungHee Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.187-195
    • /
    • 2023
  • This study propose to develop artificial intelligence liberal arts courses for college students in the humanities and social sciences majors using the entry artificial intelligence model. A group of experts in computer, artificial intelligence, and pedagogy was formed, and the final artificial intelligence liberal arts course was developed using previous research analysis and Delphi techniques. As a result of the study, the educational topics were largely composed of four categories: image classification, image recognition, text classification, and sound classification. The training consisted of 1) Understanding the principles of artificial intelligence, 2) Practice using the entry artificial intelligence model, 3) Identifying the Ethical Impact, and 4) Based on learned, team idea meeting to solve real-life problems. Through this course, understanding the principles of the core technology of artificial intelligence can be directly implemented through the entry artificial intelligence model, and furthermore, based on the experience of solving various real-life problems with artificial intelligence, and it can be expected to contribute positively to understanding technology, exploring the ethics needed in the artificial intelligence era.

The Importance of Artificial Intelligence to Economic Growth

  • HE, Yugang
    • Korean Journal of Artificial Intelligence
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • The rapid development of artificial intelligence technology has exerted a great influence on all fields of the world, which of course also affects the world economy. This has also aroused a large number of economists' interest in this proposition. Since the definition of artificial intelligence is not unified yet, the results from previous researches are not reliable enough. At present, most scholars use the neoclassical growth model or task-based model to explore the path of artificial intelligence on economic variables. There into, most of them use the degree of automation to represent the artificial intelligence. They find that the degree of automation can change the proportion of industries. This only verifies that artificial intelligence can affect the economic variables. But the magnitude of artificial intelligence on economic variables can not be correctly estimated. Therefore, in order to have a better understanding on the impact of artificial intelligence on economic growth, this paper systematically reviews and collates previous literature on this topic. The results of this paper indicate that both in theoretical and empirical studies, artificial intelligence has a positive effect on economic growth. Then, some suggestions and limitations have also been put forward accordingly.

Disapproval Judgment System of Research Fund Execution Details Based on Artificial Intelligence

  • Kim, Yongkuk;Juan, Tan;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.142-147
    • /
    • 2021
  • In this paper, we propose an intelligent research fund management system that applies artificial intelligence technology to an integrated research fund management system. By defining research fund management rules as work rules, a detection model learned using deep learning is designed, through which the disapproval status is presented for each research fund usage history. The disapproval detection system of the RCMS implemented in this study predicts whether the newly registered usage details are recognized or disapproved using an artificial intelligence model designed based on the use of an 8.87 million research fund registered in the RCMS. In addition, the item-detail recommendation system described herein presents the usage details according to the usage history item newly registered by the artificial intelligence model through a correlation between the research cost usage details and the item itself. The accuracy of the recommendation was shown to be 97.21%.

Injection of Cultural-based Subjects into Stable Diffusion Image Generative Model

  • Amirah Alharbi;Reem Alluhibi;Maryam Saif;Nada Altalhi;Yara Alharthi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • While text-to-image models have made remarkable progress in image synthesis, certain models, particularly generative diffusion models, have exhibited a noticeable bias to- wards generating images related to the culture of some developing countries. This paper introduces an empirical investigation aimed at mitigating the bias of image generative model. We achieve this by incorporating symbols representing Saudi culture into a stable diffusion model using the Dreambooth technique. CLIP score metric is used to assess the outcomes in this study. This paper also explores the impact of varying parameters for instance the quantity of training images and the learning rate. The findings reveal a substantial reduction in bias-related concerns and propose an innovative metric for evaluating cultural relevance.

4D AI Convergence Education Model (4차원 인공지능 융합 교육 모형)

  • Kim, Kapsu
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.349-354
    • /
    • 2021
  • In this study, a model that can converge with artificial intelligence in each subject as software and artificial intelligence education become mandatory in the curriculum revised in 2022 is proposed. The proposed AI convergence education model is based on the content of the subject (accomplishment standard + subject). The second axis is artificial intelligence tools, the third axis is artificial intelligence technology, and the fourth axis is data applied in daily life. In order to apply artificial intelligence to each subject, it is necessary to apply artificial intelligence tools, artificial intelligence technology, and data in daily life to the achievement standards and content of each subject. If the achievement standards and subject contents are structured in this way, it can be seen that the convergence with each subject is good. Therefore, when composing textbooks by achievement standards and topics, it is necessary to add artificial intelligence tools, artificial intelligence technology, and daily data.

  • PDF

Trends in Data Management Technology Using Artificial Intelligence (인공지능 기술을 활용한 데이터 관리 기술 동향)

  • C.S. Kim;C.S. Park;T.W. Lee;J.Y. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.22-30
    • /
    • 2023
  • Recently, artificial intelligence has been in the spotlight across various fields. Artificial intelligence uses massive amounts of data to train machine learning models and performs various tasks using the trained models. For model training, large, high-quality data sets are essential, and database systems have provided such data. Driven by advances in artificial intelligence, attempts are being made to improve various components of database systems using artificial intelligence. Replacing traditional complex algorithm-based database components with their artificial-intelligence-based counterparts can lead to substantial savings of resources and computation time, thereby improving the system performance and efficiency. We analyze trends in the application of artificial intelligence to database systems.