• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.024 seconds

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik;Maaz Salman;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology (인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석)

  • Cha Jooho;Ryu Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography

  • Su Nam Lee;Andrew Lin;Damini Dey;Daniel S. Berman;Donghee Han
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.518-539
    • /
    • 2024
  • Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.

Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance

  • Hyung Su Kim;Sangwon Lee
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.752-770
    • /
    • 2019
  • The purpose of this study is to incorporate telemarketing processes to improve telemarketing performance. For this application, we have attempted to mix the model of machine learning to extract potential customers with personalisation techniques to derive recommended products from actual contact. Most of traditional recommendation systems were mainly in ways such as collaborative filtering, which predicts items with a high likelihood of future purchase, based on existing purchase transactions or preferences for products. But, under these systems, new users or items added to the system do not have sufficient information, and generally cause problems such as a cold start that can not obtain satisfactory recommendation items. Also, indiscriminate telemarketing attempts can backfire as they increase the dissatisfaction and fatigue of customers who do not want to be contacted. To this purpose, this study presented a multi-purpose hybrid recommendation algorithm to achieve two goals: to select customers with high possibility of contact, and to recommend products to selected customers. In addition, we used subscription data from telemarketing agency that handles insurance products to derive realistic applicability of the proposed recommendation system. Our proposed recommendation system would certainly solve the cold start and scarcity problem of existing recommendation algorithm by using contents information such as customer master information and telemarketing history. Also. the model could show excellent performance not only in terms of overall performance but also in terms of the recommendation success rate of the unpopular product.

Detecting colorectal lesions with image-enhanced endoscopy: an updated review from clinical trials

  • Mizuki Nagai;Sho Suzuki;Yohei Minato;Fumiaki Ishibashi;Kentaro Mochida;Ken Ohata;Tetsuo Morishita
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.553-562
    • /
    • 2023
  • Colonoscopy plays an important role in reducing the incidence and mortality of colorectal cancer by detecting adenomas and other precancerous lesions. Image-enhanced endoscopy (IEE) increases lesion visibility by enhancing the microstructure, blood vessels, and mucosal surface color, resulting in the detection of colorectal lesions. In recent years, various IEE techniques have been used in clinical practice, each with its unique characteristics. Numerous studies have reported the effectiveness of IEE in the detection of colorectal lesions. IEEs can be divided into two broad categories according to the nature of the image: images constructed using narrow-band wavelength light, such as narrow-band imaging and blue laser imaging/blue light imaging, or color images based on white light, such as linked color imaging, texture and color enhancement imaging, and i-scan. Conversely, artificial intelligence (AI) systems, such as computer-aided diagnosis systems, have recently been developed to assist endoscopists in detecting colorectal lesions during colonoscopy. To gain a better understanding of the features of each IEE, this review presents the effectiveness of each type of IEE and their combination with AI for colorectal lesion detection by referencing the latest research data.

A Study on AI-based MAC Scheduler in Beyond 5G Communication (5G 통신 MAC 스케줄러에 관한 연구)

  • Muhammad Muneeb;Kwang-Man Ko
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.891-894
    • /
    • 2024
  • The quest for reliability in Artificial Intelligence (AI) is progressively urgent, especially in the field of next generation wireless networks. Future Beyond 5G (B5G)/6G networks will connect a huge number of devices and will offer innovative services invested with AI and Machine Learning tools. Wireless communications, in general, and medium access control (MAC) techniques were among the fields that were heavily affected by this improvement. This study presents the applications and services of future communication networks. This study details the Medium Access Control (MAC) scheduler of Beyond-5G/6G from 3rd Generation Partnership (3GPP) and highlights the current open research issues which are yet to be optimized. This study provides an overview of how AI plays an important role in improving next generation communication by solving MAC-layer issues such as resource scheduling and queueing. We will select C-V2X as our use case to implement our proposed MAC scheduling model.

Advanced endoscopic imaging for detection of Barrett's esophagus

  • Netanel Zilberstein;Michelle Godbee;Neal A. Mehta;Irving Waxman
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Barrett's esophagus (BE) is the precursor to esophageal adenocarcinoma (EAC), and is caused by chronic gastroesophageal reflux. BE can progress over time from metaplasia to dysplasia, and eventually to EAC. EAC is associated with a poor prognosis, often due to advanced disease at the time of diagnosis. However, if BE is diagnosed early, pharmacologic and endoscopic treatments can prevent progression to EAC. The current standard of care for BE surveillance utilizes the Seattle protocol. Unfortunately, a sizable proportion of early EAC and BE-related high-grade dysplasia (HGD) are missed due to poor adherence to the Seattle protocol and sampling errors. New modalities using artificial intelligence (AI) have been proposed to improve the detection of early EAC and BE-related HGD. This review will focus on AI technology and its application to various endoscopic modalities such as high-definition white light endoscopy, narrow-band imaging, and volumetric laser endomicroscopy.