• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.024 seconds

Airborne Fine Particle Measurement Data Analysis and Statistical Significance Analysis (공기중 미세입자 측정 데이터 분석 및 통계 유의차 분석)

  • Sung Jun An;Moon Suk Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • Most of the production process is performed in a cleanroom in the case of facilities that produce semiconductor chips or display panels. Therefore, environmental management of cleanrooms is very important for product yield and quality control. Among them, airborne particles are a representative management item enough to be the standard for the actual cleanroom rating, and it is a part of the Fab or Facility monitoring system, and the sequential particle monitoring system is mainly used. However, this method has a problem in that measurement efficiency decreases as the length of the sampling tube increases. In addition, a statistically significant test of deterioration in efficiency has rarely been performed. Therefore, in this study, the statistically significant test between the number of particles measured by InSitu and the number of particles measured for each sampling tube ends(Remote). Through this, the efficiency degradation problem of the sequential particle monitoring system was confirmed by a statistical method.

  • PDF

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.

Top-Level Implementation of AI4SE, SE4AI for the AI-SE convergence in the Defense Acquisition (무기체계 획득에서 인공지능-시스템엔지니어링 융화를 위한 최상위 수준의 AI4SE, SE4AI 구현방안)

  • Min Woo Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Artificial Intelligence (AI) is a prominent topic in almost every field. In Korea, Systems Engineering (SE) procedures are applied in Defense Acquisition, and it is anticipated that SE procedures will also be applied to systems incorporating AI capabilities. This study explores the applicability of the concepts "AI4SE (AI for SE)" and "SE4AI (SE for AI)," which have been proposed in the United States, to the Korean context. The research examines the feasibility of applying these concepts, identifies necessary tasks, and proposes implementation strategies. For the AI4SE, many attempts and studies applying AI to SE Processes both Requirements & Architectures Define, System implementation & V&V, and Sustainment. It needs Explainability and Security. For the SE4AI, the Functional AI implementation level, Quality & Security of the Data-set, AI Ethics, and Review policies are needed. Furthermore, it provides perspectives on how these two concepts should ultimately converge and suggests future directions for development.

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.

Improving Construction Site Supervision with Vision Processing AI Technology (비전 프로세싱 인공지능 기술을 활용한 건설현장 감리)

  • Lee, Seung-Been;Park, Kyung Kyu;Seo, Min Jo;Choi, Won Jun;Kim, Si Uk;Kim, Chee Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.235-236
    • /
    • 2023
  • The process of construction site supervision plays a crucial role in ensuring safety and quality assurance in construction projects. However, traditional methods of supervision largely depend on human vision and individual experience, posing limitations in quickly detecting and preventing all defects. In particular, the thorough supervision of expansive sites is time-consuming and makes it challenging to identify all defects. This study proposes a new construction supervision system that utilizes vision processing technology and Artificial Intelligence(AI) to automatically detect and analyze defects as a solution to these issues. The system we developed is provided in the form of an application that operates on portable devices, designed to a lower technical barrier so that even non-experts can easily aid construction site supervision. The developed system swiftly and accurately identifies various potential defects at the construction site. As such, the introduction of this system is expected to significantly enhance the speed and accuracy of the construction supervision process.

  • PDF

A Study on Improving License Plate Recognition Performance Using Super-Resolution Techniques

  • Kyeongseok JANG;Kwangchul SON
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we propose an innovative super-resolution technique to address the issue of reduced accuracy in license plate recognition caused by low-resolution images. Conventional vehicle license plate recognition systems have relied on images obtained from fixed surveillance cameras for traffic detection to perform vehicle detection, tracking, and license plate recognition. However, during this process, image quality degradation occurred due to the physical distance between the camera and the vehicle, vehicle movement, and external environmental factors such as weather and lighting conditions. In particular, the acquisition of low-resolution images due to camera performance limitations has been a major cause of significantly reduced accuracy in license plate recognition. To solve this problem, we propose a Single Image Super-Resolution (SISR) model with a parallel structure that combines Multi-Scale and Attention Mechanism. This model is capable of effectively extracting features at various scales and focusing on important areas. Specifically, it generates feature maps of various sizes through a multi-branch structure and emphasizes the key features of license plates using an Attention Mechanism. Experimental results show that the proposed model demonstrates significantly improved recognition accuracy compared to existing vehicle license plate super-resolution methods using Bicubic Interpolation.

Precision Lung Cancer Segmentation from CT & PET Images Using Mask2Former (Mask2Former 를 이용한 CT 및 PET 영상의 정밀 폐암 분할)

  • Md Ilias Bappi;Kyungbeak Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.653-655
    • /
    • 2024
  • Lung cancer is a leading cause of death worldwide, highlighting the critical need for early diagnosis. Lung image analysis and segmentation are essential steps in this process, but manual segmentation of medical images is extremely time-consuming for radiation oncologists. The complexity of this task is heightened by the significant variability in lung tumors, which can differ greatly in size, shape, and texture due to factors like tumor subtype, stage, and patient-specific characteristics. Traditional segmentation methods often struggle to accurately capture this diversity. To address these challenges, we propose a lung cancer diagnosis system based on Mask2Former, utilizing CT (Computed Tomography) and PET (Positron Emission Tomography) images. This system excels in generating high-quality instance segmentation masks, enabling it to better adapt to the heterogeneous nature of lung tumors compared to traditional methods. Additionally, our system classifies the segmented output as either benign or malignant, leveraging a self-supervised network. The proposed approach offers a powerful tool for early diagnosis and effective management of lung cancer using CT and PET data. Extensive experiments demonstrate its effectiveness in achieving improved segmentation and classification results.

The Effect of Chatbot Service Quality on Customer Satisfaction and Continuous Use Intention (챗봇 서비스품질이 고객만족과 지속사용의도에 미치는 영향)

  • Min Jeong KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • This study is about the effect of chatbot service quality on customer satisfaction and continuous use intention. Data collection was conducted for 13 days from October 23 to November 5, 2023, and a survey was conducted on customers who have used chatbot services. A total of 572 questionnaires were targeted, of which 545 valid data were used for analysis, excluding those that responded insincerely or did not meet the purpose of the study. The analysis results of this study are as follows: First, chatbot service quality partially had a significant effect on satisfaction. Second, customer satisfaction had a significant effect on continuous use intention. Therefore, in order to have a positive impact on continuous use intention, it is necessary to focus on marketing strategies related to chatbot service quality. Also, research focusing on data analysis and performance evaluation is crucial for enhancing chatbot services, necessitating studies that address real-time changes. Through sophisticated data analysis and variable measurement, chatbot services can be effectively improved, leading to enhanced customer satisfaction.

A Framework for Inteligent Remote Learning System

  • 유영동
    • The Journal of Information Systems
    • /
    • v.2
    • /
    • pp.194-206
    • /
    • 1993
  • Intelligent remote learning system is a system that incorporate communication technology and others : a database engine, an intelligent tutorial system. Learners can study by themselves through the intelligent tutorial system. The existence of a communication, database and artificial intelligence enhance the capability of IRLS. According to Parsaye, an intelligent databases should have the following features : 1) Knowledge discovery. 2) Data integrity and quality control. 3) Hypermedia management. 4) Data presentation and display. 5) Decision support and scenario analysis. 6) Data format management. 7) Intelligent system design tools. I hope that this research of framework for IRLS paves for the future research. As mentioned in the above, the future work will include an intelligent database, self-learning mechanism using neural network.

  • PDF

Water quality data analysis for development of artificial intelligence-based fish farm management system (인공지능 기반(ML) 양식장 관리시스템 개발을 위한 수질 데이터 분석)

  • Hyun Sim;Heung Sup Sim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.205-208
    • /
    • 2023
  • 양식장에서 최적의 생육환경을 유지할 수 있는 제어시스템 개발을 위해 수질에 영향을 미치는 요인들의 상관관계 분석을 위한 머신러닝 모델을 개발하고자 한다. 데이터간의 상관관계 분석 및 예측모델 생성을 위해 알고리즘의 결정계수와 MSE, RMSE 등의 수치를 통하여 데이터의 적합성을 검증하고자 한다.

  • PDF