• 제목/요약/키워드: artificial intelligence models

검색결과 840건 처리시간 0.024초

개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델 (A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning)

  • 이화영
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권4호
    • /
    • pp.333-348
    • /
    • 2023
  • 인공지능 기반의 수학 디지털교과서의 가장 핵심적인 기능으로 여겨지는 개별 맞춤형 교수·학습이 실현되기 위해서는 개별 학생의 여러 가지 특성 요인에 대한 명확한 분석과 진단이 가장 관건이다. 본 연구에서는 수학 AI 디지털교과서에서 개별 맞춤형 학습 진단을 위한 분석 요인과 도구, 데이터 수집·분석을 위한 구축 모델을 도출하였다. 이를 위하여 최근 교육부의 AI 디지털교과서 적용 계획에 따른 수학 AI 디지털교과서에 대한 요구, 개별화 맞춤형 학습과 이를 위한 데이터에 대한 선행 연구, 수학 디지털플랫폼에서 학습자 분석에 대한 요인 등이 검토되었다. 연구 결과, 연구자는 학생 개인별로 수집해야 할 데이터로 학습 분석을 위한 요인으로 학습 준비도, 과정 및 수행도, 성취도, 취약점, 성향 분석을 위한 요인으로 학습 지속 시간, 문제해결에 걸린 시간, 집중도, 수학학습 습관, 정서 분석을 위한 요인으로 자신감, 흥미, 불안, 학습의욕, 가치 인식, 태도 분석을 위한 요인으로 자기 관리, 학습 전략으로 정리하였다. 또한, 이러한 요인에 대한 데이터 수집 도구로, 문제에 대한 정오 데이터, 학습 진도율, 학생 활동에 대한 화면 녹화 자료, 이벤트 데이터, 시선 추적 장치, 자기 응답 설문 등을 제안하였다. 최종적으로 이러한 요인들을 학습 전, 중, 후로 시계열화한 데이터 수집 모델이 제안되었다.

머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로 (Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data)

  • 윤양현;김태경;김수영
    • 벤처창업연구
    • /
    • 제17권1호
    • /
    • pp.229-249
    • /
    • 2022
  • 본 연구는 다양한 머신러닝 기법을 통해 코스닥(KOSDAQ) 시장 내 관리종목 지정을 예측할 수 있는 모델에 대해 연구하였다. 증권시장 내 기업이 관리종목으로 지정이 되면 시장에서는 이를 부정적인 정보로 인식하여 해당 기업과 투자자에게 손실을 가져오게 된다. 본 연구를 통해 기업의 재무적 데이터를 바탕으로 조기에 관리종목 지정을 예측하고, 투자자들의 포트폴리오 리스크 관리에 도움을 주기 위한 머신러닝 접근이 타당한지 살펴본다. 본 연구를 위해 활용한 독립변수는 수익성, 안정성, 활동성, 성장성을 나타내는 21개의 재무비율을 활용하였으며, K-IFRS가 적용된 2011년부터 2020년까지 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 추출하였다. 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, LightGBM을 활용하여 관리종목 지정 예측 연구를 수행하였다. 연구결과는 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 의사결정나무 기반 학습 모형의 변수 중요도의 상위 3개 변수를 확인한 결과 각 모형에서 공통적으로 나온 재무변수는 ROE(당기순이익), 자본금회전율(Capital stock turnover ratio)로 해당 재무변수가 관리종목 지정에 있어 상대적으로 중요한 변수임을 확인하였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높은 것을 확인하였다. 기존 선행연구가 K-IFRS에 대한 고려를 하지 않았고, 다소 제한된 머신러닝에 의존하였다. 따라서 본 연구의 필요성과 함께 현실적 요구를 충족시키는 결과를 제시하였음을 알 수 있으며, 시장참여자들에게 있어 관리종목 지정에 대한 사전 예측을 확인할 수 있도록 기여했다고 볼 수 있다.

Automated Lung Segmentation on Chest Computed Tomography Images with Extensive Lung Parenchymal Abnormalities Using a Deep Neural Network

  • Seung-Jin Yoo;Soon Ho Yoon;Jong Hyuk Lee;Ki Hwan Kim;Hyoung In Choi;Sang Joon Park;Jin Mo Goo
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.476-488
    • /
    • 2021
  • Objective: We aimed to develop a deep neural network for segmenting lung parenchyma with extensive pathological conditions on non-contrast chest computed tomography (CT) images. Materials and Methods: Thin-section non-contrast chest CT images from 203 patients (115 males, 88 females; age range, 31-89 years) between January 2017 and May 2017 were included in the study, of which 150 cases had extensive lung parenchymal disease involving more than 40% of the parenchymal area. Parenchymal diseases included interstitial lung disease (ILD), emphysema, nontuberculous mycobacterial lung disease, tuberculous destroyed lung, pneumonia, lung cancer, and other diseases. Five experienced radiologists manually drew the margin of the lungs, slice by slice, on CT images. The dataset used to develop the network consisted of 157 cases for training, 20 cases for development, and 26 cases for internal validation. Two-dimensional (2D) U-Net and three-dimensional (3D) U-Net models were used for the task. The network was trained to segment the lung parenchyma as a whole and segment the right and left lung separately. The University Hospitals of Geneva ILD dataset, which contained high-resolution CT images of ILD, was used for external validation. Results: The Dice similarity coefficients for internal validation were 99.6 ± 0.3% (2D U-Net whole lung model), 99.5 ± 0.3% (2D U-Net separate lung model), 99.4 ± 0.5% (3D U-Net whole lung model), and 99.4 ± 0.5% (3D U-Net separate lung model). The Dice similarity coefficients for the external validation dataset were 98.4 ± 1.0% (2D U-Net whole lung model) and 98.4 ± 1.0% (2D U-Net separate lung model). In 31 cases, where the extent of ILD was larger than 75% of the lung parenchymal area, the Dice similarity coefficients were 97.9 ± 1.3% (2D U-Net whole lung model) and 98.0 ± 1.2% (2D U-Net separate lung model). Conclusion: The deep neural network achieved excellent performance in automatically delineating the boundaries of lung parenchyma with extensive pathological conditions on non-contrast chest CT images.

딥러닝 기반 비디오 캡셔닝의 연구동향 분석 (Analysis of Research Trends in Deep Learning-Based Video Captioning)

  • 려치;이은주;김영수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제13권1호
    • /
    • pp.35-49
    • /
    • 2024
  • 컴퓨터 비전과 자연어 처리의 융합의 중요한 결과로서 비디오 캡셔닝은 인공지능 분야의 핵심 연구 방향이다. 이 기술은 비디오 콘텐츠의 자동이해와 언어 표현을 가능하게 함으로써, 컴퓨터가 비디오의 시각적 정보를 텍스트 형태로 변환한다. 본 논문에서는 딥러닝 기반 비디오 캡셔닝의 연구 동향을 초기 분석하여 CNN-RNN 기반 모델, RNN-RNN 기반 모델, Multimodal 기반 모델, 그리고 Transformer 기반 모델이라는 네 가지 주요 범주로 나누어 각각의 비디오 캡셔닝 모델의 개념과 특징 그리고 장단점을 논하였다. 그리고 이 논문은 비디오 캡셔닝 분야에서 일반적으로 자주 사용되는 데이터 집합과 성능 평가방안을 나열하였다. 데이터 세트는 다양한 도메인과 시나리오를 포괄하여 비디오 캡션 모델의 훈련 및 검증을 위한 광범위한 리소스를 제공한다. 모델 성능 평가방안에서는 주요한 평가 지표를 언급하며, 모델의 성능을 다양한 각도에서 평가할 수 있도록 연구자들에게 실질적인 참조를 제공한다. 마지막으로 비디오 캡셔닝에 대한 향후 연구과제로서 실제 응용 프로그램에서의 복잡성을 증가시키는 시간 일관성 유지 및 동적 장면의 정확한 서술과 같이 지속해서 개선해야 할 주요 도전과제와 시간 관계 모델링 및 다중 모달 데이터 통합과 같이 새롭게 연구되어야 하는 과제를 제시하였다.

Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study

  • Sung-Hoon Han;Jisup Lim;Jun-Sik Kim;Jin-Hyoung Cho;Mihee Hong;Minji Kim;Su-Jung Kim;Yoon-Ji Kim;Young Ho Kim;Sung-Hoon Lim;Sang Jin Sung;Kyung-Hwa Kang;Seung-Hak Baek;Sung-Kwon Choi;Namkug Kim
    • 대한치과교정학회지
    • /
    • 제54권1호
    • /
    • pp.48-58
    • /
    • 2024
  • Objective: To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). Methods: A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. Results: The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. Conclusions: The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.

Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석 (Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit)

  • 나혜인;이병희
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT는 생성형 인공지능(Generative AI) 기술을 활용한 대표적인 챗봇으로서 과학기술 영역뿐만 아니라 사회, 경제, 산업, 문화 등 당양한 분야에서 유용하게 활용되고 있다. 본 연구는 글로벌 소셜미디어 레딧(Reddit)을 활용해 ChatGPT에 대한 사용자의 감정과 요구에 대한 탐색적인 분석을 수행한다. 이를 위해, 2022년 12월부터 2023년 8월까지의 댓글 10,796건을 수집하여 키워드 분석, 감성 분석, 니드마이닝(Needmining) 기반 토픽모델링을 실시하였다. 분석 결과, ChatGPT에 대한 댓글에서 출현 빈도가 가장 높은 단어는 "time"으로 답변의 신속성, 시간 효율성, 생산성 향상을 강조한 것으로 나타났다. 사용자들은 ChatGPT에 대해 신뢰와 기대의 감정과 동시에 사회적 영향에 대한 두려움과 분노의 감정을 표현하였다. 또한, 토픽모델링 분석을 통해 잠재적 니즈(Needs)를 포함한 14개의 주제를 도출하였고, 사용자들이 특히 ChatGPT에 대한 교육적 활용과 사회적 영향에 많은 관심을 보였다. 또한, ChatGPT와 관련된 언어모델, 직업, 정보, 의료, 서비스, 게임, 규제, 에너지, 윤리적 문제 등 다양한 주제들이 논의된 것을 알 수 있었다. 분석 결과를 바탕으로 사용자들의 요구를 반영하여 향후 실행계획의 방향을 제시하였다. 본 연구는 향후 ChatGPT를 이용하여 제품과 서비스를 개선하고, 새로운 서비스 플랫폼 기획 단계에서 유용한 정보를 제공할 것으로 기대된다.

Mechanical behavior of 316L austenitic stainless steel bolts after fire

  • Zhengyi Kong;Bo Yang;Cuiqiang Shi;Xinjie Huang;George Vasdravellis;Quang-Viet Vu;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.281-298
    • /
    • 2024
  • Stainless steel bolts (SSB) are increasingly utilized in bolted steel connections due to their good mechanical performance and excellent corrosion resistance. Fire accidents, which commonly occur in engineering scenarios, pose a significant threat to the safety of steel frames. The post-fire behavior of SSB has a significant influence on the structural integrity of steel frames, and neglecting the effect of temperature can lead to serious accidents in engineering. Therefore, it is important to evaluate the performance of SSB at elevated temperatures and their residual strength after a fire incident. To investigate the mechanical behavior of SSB after fire, 114 bolts with grades A4-70 and A4-80, manufactured from 316L austenitic stainless steel, were subjected to elevated temperatures ranging from 20℃ to 1200℃. Two different cooling methods commonly employed in engineering, namely cooling at ambient temperatures (air cooling) and cooling in water (water cooling), were used to cool the bolts. Tensile tests were performed to examine the influence of elevated temperatures and cooling methods on the mechanical behavior of SSB. The results indicate that the temperature does not significantly affect the Young's modulus and the ultimate strength of SSB. Up to 500℃, the yield strength increases with temperature, but this trend reverses when the temperature exceeds 500℃. In contrast, the ultimate strain shows the opposite trend. The strain hardening exponent is not significantly influenced by the temperature until it reaches 500℃. The cooling methods employed have an insignificant impact on the performance of SSB. When compared to high-strength bolts, 316L austenitic SSB demonstrate superior fire resistance. Design models for the post-fire mechanical behavior of 316L austenitic SSB, encompassing parameters such as the elasticity modulus, yield strength, ultimate strength, ultimate strain, and strain hardening exponent, are proposed, and a more precise stress-strain model is recommended to predict the mechanical behavior of 316L austenitic SSB after a fire incident.

Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels

  • Pyeong Hwa Kim;Hee Mang Yoon;Jeong Rye Kim;Jae-Yeon Hwang;Jin-Ho Choi;Jisun Hwang;Jaewon Lee;Jinkyeong Sung;Kyu-Hwan Jung;Byeonguk Bae;Ah Young Jung;Young Ah Cho;Woo Hyun Shim;Boram Bak;Jin Seong Lee
    • Korean Journal of Radiology
    • /
    • 제24권11호
    • /
    • pp.1151-1163
    • /
    • 2023
  • Objective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model. Materials and Methods: A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7-12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; median age [IQR], 10 [4-15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5-14] years; male: female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model). Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2. Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.

셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용 (Development and application of cellular automata-based urban inundation and water cycle model CAW)

  • 이송희;최현진;우현아;김민영;이은형;김상현;노성진
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.165-179
    • /
    • 2024
  • 도시 지역의 홍수 위험을 완화하고 지속 가능한 수자원을 관리하기 위해서는 도시 홍수와 물순환의 연계 해석이 필수적이다. 본 연구는 간단한 전환 규칙을 통해 침수의 시공간적 변화를 모의하는 셀룰러 오토마타 기법을 이용하여 고해상도 도시침수 및 물순환 해석 모형 CAW (Cellular Automata-based integrated Water cycle model)를 개발하고, 그 적용성을 평가하였다. 개발된 모형을 미국 포틀랜드 도심지 유역에 적용하고, 물리 기반 모형 및 기존 셀룰러 오토마타 기반 모형의 침수 해석 결과와 비교하여 도시침수 재현의 적절성을 평가하였다. 연구 결과, 침수 검증 대상 지점에 대한 CAW 모형의 최대 침수심 분포는 확산파 방정식을 모사하는 WCA2D (Weighted Cellular Automata 2 Dimension) 모형과 평균오차 값이 1.3 cm로 유사하게 모의되었고, 이진 패턴 유사도 검증에서 HR 0.91, FAR 0.02, CSI 0.90으로 비교적 높은 유사성을 나타내며 모형의 침수 해석 적용성을 검증하였다. 또한, 토지피복 및 토양 조건이 침수, 침투에 미치는 영향을 시험 평가한 결과, 불투수율이 41% 더 높은 지역에서의 침투와 최대 침수심이 각각 54%(4.16 mm/m2) 감소 및 10%(2.19 mm/m2) 증가하였다. CAW 모형을 이용하여 도시 유역의 다양한 토지피복 및 토양 특성을 고려한 고해상도 물순환 및 도시침수 연계 모의 해석이 가능할 것으로 기대된다.

프롬프트 엔지니어링을 통한 GPT-4 모델의 수학 서술형 평가 자동 채점 탐색: 순열과 조합을 중심으로 (Exploring automatic scoring of mathematical descriptive assessment using prompt engineering with the GPT-4 model: Focused on permutations and combinations)

  • 신병철;이준수;유연주
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.187-207
    • /
    • 2024
  • 본 연구에서는 GPT-4 기반의 ChatGPT를 활용한 서술형 평가 문항의 자동 채점 가능성을 탐색하기 위해 교사와 GPT-4 기반의 ChatGPT의 채점 결과를 비교, 분석하였다. 이를 위해 학생평가지원포털에 있는 고등학교 1학년 순열과 조합 단원에서 3개의 서술형 문항을 선정하였다. 문항 1, 2는 문제 해결 전략이 1가지인 문항이고, 문항 3은 문제 해결 전략이 2가지 이상인 문항이었다. 8년 이상의 교육 경력이 있는 교사 2명이 학생 204명의 답안을 채점하고, GPT-4 기반의 ChatGPT의 채점 결과와 비교하였다. 문항별로 Few-Shot-CoT, SC, 구조화, 반복 프롬프트 기법 등을 활용하여 채점을 위한 프롬프트를 구성하였고, 이를 GPT-4 기반의 ChatGPT에 입력하여 채점하였다. 채점 결과, 문항 1, 2는 교사의 채점 결과와 GPT-4의 채점 결과 사이에 강한 상관관계를 충족하였다. 문제 해결 전략이 2가지인 문항 3은 먼저 채점 전 학생 답안을 문제 해결전략별로 분류하는 프롬프트를 GPT-4 기반의 ChatGPT에 입력하여 답안을 분류하였다. 이후 유형별로 채점 프롬프트를 적용하여 GPT-4 기반의 ChatGPT에 입력하여 채점하였고, 채점 결과 역시 교사의 채점 결과와 강한 상관관계가 나타났다. 이를 통해 프롬프트 엔지니어링을 활용한 GPT-4 모델이 교사의 채점을 보조할 수 있는 가능성을 확인하였으며 본 연구의 한계점 및 향후 연구 방향을 제시하였다.