• Title/Summary/Keyword: artificial intelligence algorithm

Search Result 876, Processing Time 0.029 seconds

Design and Implementation of Sensibilities Lighting LED Controller using Modbus for a Ship (Modbus를 이용한 선박용 감성조명 LED 제어기의 설계 및 구현)

  • Jeong, Jeong-Soo;Lee, Sang-Bae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.299-305
    • /
    • 2015
  • Modbus is a serial communications protocol, it has since become a practically standard communication protocol, and it is now a commonly available means of connecting industrial electronic devices. Therefore, it can be connected with all devices using Modbus protocol to the measurement and remote control on the ships, buildings, trains, airplanes and etc.. In this paper, we add the Modbus communication protocol to the existing lighting controller sensitivity to enable verification and remote control by external environmental factors, and also introduces a fuzzy inference system was configured by external environmental factors to control LED lighting. External environmental factors of temperature, humidity, illuminance value represented by the LED through a fuzzy control algorithm, the values accepted by the controller through the sensor. Modbus is using the RS485 Serial communication with other devices connected to the temperature, humidity, illumination and LED output status check is possible. In addition, the remote user is changed to enable it is possible to change the RGB values in the desired color change. Produced was confirmed that the LED controller output is based on the temperature, humidity and illumination.

Sensitivity Analysis of the Effect of Soil Ecological Quality Information in Selecting Eco-Friendly Road Route (토양생태 등급 정보가 친환경도로노선 선정에 미치는 영향에 관한 민감도 분석)

  • Ki, Dong-Won;Kang, Ho-Geun;Lee, Sang-Eun;Heo, Joon;Park, Joon-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.37-44
    • /
    • 2008
  • Soil ecology has important roles in global ecosystems. However, soil ecological quality information is being ignored when assessing ecological impact of construction actions. And methods for classifying and assessing soil ecological quality have been very little established in comparison to those for animal and plant ecosystems. In this study, it was examined whether soil ecological quality information has influence on determining an eco-friendly route for a road construction project. For this, sensitivity analysis was systematically performed by varying the relative significance (weights) of soil ecological quality information among natural environmental and ecological factors. When the weight of soil ecological quality was greater than just 14%, the soil ecological quality information significantly influenced the determination of the eco-friendly routes for a specific road construction project. This demonstrates that soil ecological quality information has to be considered for more reliable environmental impact assessment, and also supports the validity of use of soil ecological quality information and its mapping technique in planning and siting of eco-friendly construction projects.

A Study on the Methodology of Early Diagnosis of Dementia Based on AI (Artificial Intelligence) (인공지능(AI) 기반 치매 조기진단 방법론에 관한 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.37-49
    • /
    • 2021
  • The number of dementia patients in Korea is estimated to be over 800,000, and the severity of dementia is becoming a social problem. However, no treatment or drug has yet been developed to cure dementia worldwide. The number of dementia patients is expected to increase further due to the rapid aging of the population. Currently, early detection of dementia and delaying the course of dementia symptoms is the best alternative. This study presented a methodology for early diagnosis of dementia by measuring and analyzing amyloid plaques. This vital protein can most clearly and early diagnose dementia in the retina through AI-based image analysis. We performed binary classification and multi-classification learning based on CNN on retina data. We also developed a deep learning algorithm that can diagnose dementia early based on pre-processed retinal data. Accuracy and recall of the deep learning model were verified, and as a result of the verification, and derived results that satisfy both recall and accuracy. In the future, we plan to continue the study based on clinical data of actual dementia patients, and the results of this study are expected to solve the dementia problem.

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.63-71
    • /
    • 2020
  • In this paper, we propose a fire detection technology using YOLOv3 and EfficientDet, the most reliable artificial intelligence detection algorithm recently, an alert service that simultaneously transmits four kinds of notifications: text, web, app and e-mail, and an AWS system that links fire detection and notification service. There are two types of our highly accurate fire detection algorithms; the fire detection model based on YOLOv3, which operates locally, used more than 2000 fire data and learned through data augmentation, and the EfficientDet, which operates in the cloud, has conducted transfer learning on the pretrained model. Four types of notification services were established using AWS service and FCM service; in the case of the web, app, and mail, notifications were received immediately after notification transmission, and in the case of the text messaging system through the base station, the delay time was fast enough within one second. We proved the accuracy of our fire detection technology through fire detection experiments using the fire video, and we also measured the time of fire detection and notification service to check detecting time and notification time. Our AI fire detection and notification service system in this paper is expected to be more accurate and faster than past fire detection systems, which will greatly help secure golden time in the event of fire accidents.

Home training trend analysis using newspaper big data and keyword analysis (신문 빅데이터와 키워드 분석을 이용한 홈트레이닝 트렌드 분석)

  • Chi, Dong-Cheol;Kim, Sang-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.233-239
    • /
    • 2021
  • Recently, the COVID-19 virus has caused people to stay indoors longer without going out. As a result of this, people's activity decreased sharply, and their weight gained. So people became more interested in health. Home training can be an alternative method to solve this problem. Accordingly, To find out the trends of home training, we collected articles from December 1, 2019, to November 30, 2020, using the news provided by BIG KINDS, a news analysis system. We analyzed frequency analysis, relational analysis according to weighting, and related word analysis with the program using the algorithm developed by BIG KINDS. In conclusion, first, it was found that home training is led by technology and the emergence of artificial intelligence. Second, it can be assumed that people mainly do home training using content and video services related to mobile carriers. Third, people had a high preference for Pilates in the sports category. It can be seen that the number of patent applications increased as the demand for exercise products related to Pilates increased. In the next study, we expect that this study will be used as primary data for various big data studies by supplementing the research methodology and conducting various analyses.

Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices (사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델)

  • Lee, Hyunsik;Lee, Woongjae;Jeong, Taikyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.33-45
    • /
    • 2020
  • This paper aims to look at the perspective that the latest cutting-edge technologies are predicting individual diseases in the actual medical environment in a situation where various types of wearable devices are rapidly increasing and used in the healthcare domain. Through the process of collecting, processing, and transmitting data by merging clinical data, genetic data, and life log data through a user-participating wearable device, it presents the process of connecting the learning model and the feedback model in the environment of the Deep Neural Network. In the case of the actual field that has undergone clinical trial procedures of medical IT occurring in such a high-tech medical field, the effect of a specific gene caused by metabolic syndrome on the disease is measured, and clinical information and life log data are merged to process different heterogeneous data. That is, it proves the objective suitability and certainty of the deep neural network of heterogeneous data, and through this, the performance evaluation according to the noise in the actual deep learning environment is performed. In the case of the automatic encoder, we proved that the accuracy and predicted value varying per 1,000 EPOCH are linearly changed several times with the increasing value of the variable.

A Study on the Design and Implementation of Multi-Disaster Drone System Using Deep Learning-Based Object Recognition and Optimal Path Planning (딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구)

  • Kim, Jin-Hyeok;Lee, Tae-Hui;Han, Yamin;Byun, Heejung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • In recent years, human damage and loss of money due to various disasters such as typhoons, earthquakes, forest fires, landslides, and wars are steadily occurring, and a lot of manpower and funds are required to prevent and recover them. In this paper, we designed and developed a disaster drone system based on artificial intelligence in order to monitor these various disaster situations in advance and to quickly recognize and respond to disaster occurrence. In this study, multiple disaster drones are used in areas where it is difficult for humans to monitor, and each drone performs an efficient search with an optimal path by applying a deep learning-based optimal path algorithm. In addition, in order to solve the problem of insufficient battery capacity, which is a fundamental problem of drones, the optimal route of each drone is determined using Ant Colony Optimization (ACO) technology. In order to implement the proposed system, it was applied to a forest fire situation among various disaster situations, and a forest fire map was created based on the transmitted data, and a forest fire map was visually shown to the fire fighters dispatched by a drone equipped with a beam projector. In the proposed system, multiple drones can detect a disaster situation in a short time by simultaneously performing optimal path search and object recognition. Based on this research, it can be used to build disaster drone infrastructure, search for victims (sea, mountain, jungle), self-extinguishing fire using drones, and security drones.

Development of a Web-based Presentation Attitude Correction Program Centered on Analyzing Facial Features of Videos through Coordinate Calculation (좌표계산을 통해 동영상의 안면 특징점 분석을 중심으로 한 웹 기반 발표 태도 교정 프로그램 개발)

  • Kwon, Kihyeon;An, Suho;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • In order to improve formal presentation attitudes such as presentation of job interviews and presentation of project results at the company, there are few automated methods other than observation by colleagues or professors. In previous studies, it was reported that the speaker's stable speech and gaze processing affect the delivery power in the presentation. Also, there are studies that show that proper feedback on one's presentation has the effect of increasing the presenter's ability to present. In this paper, considering the positive aspects of correction, we developed a program that intelligently corrects the wrong presentation habits and attitudes of college students through facial analysis of videos and analyzed the proposed program's performance. The proposed program was developed through web-based verification of the use of redundant words and facial recognition and textualization of the presentation contents. To this end, an artificial intelligence model for classification was developed, and after extracting the video object, facial feature points were recognized based on the coordinates. Then, using 4000 facial data, the performance of the algorithm in this paper was compared and analyzed with the case of facial recognition using a Teachable Machine. Use the program to help presenters by correcting their presentation attitude.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

Development of Graph based Deep Learning methods for Enhancing the Semantic Integrity of Spaces in BIM Models (BIM 모델 내 공간의 시멘틱 무결성 검증을 위한 그래프 기반 딥러닝 모델 구축에 관한 연구)

  • Lee, Wonbok;Kim, Sihyun;Yu, Youngsu;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.45-55
    • /
    • 2022
  • BIM models allow building spaces to be instantiated and recognized as unique objects independently of model elements. These instantiated spaces provide the required semantics that can be leveraged for building code checking, energy analysis, and evacuation route analysis. However, theses spaces or rooms need to be designated manually, which in practice, lead to errors and omissions. Thus, most BIM models today does not guarantee the semantic integrity of space designations, limiting their potential applicability. Recent studies have explored ways to automate space allocation in BIM models using artificial intelligence algorithms, but they are limited in their scope and relatively low classification accuracy. This study explored the use of Graph Convolutional Networks, an algorithm exclusively tailored for graph data structures. The goal was to utilize not only geometry information but also the semantic relational data between spaces and elements in the BIM model. Results of the study confirmed that the accuracy was improved by about 8% compared to algorithms that only used geometric distinctions of the individual spaces.