• Title/Summary/Keyword: article keywords

Search Result 136, Processing Time 0.032 seconds

The study on the design of Korean Medical Article Retrieval System Supporting Semantic Navigation based on Ontology (의미 네비게이션을 지원하는 온톨로지 기반 한의학 논문 검색 시스템 설계 연구)

  • Ko, You-Mi;Eom, Dong-Myung
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.35-52
    • /
    • 2005
  • This study is to design a Semantic Navigation Retrieval System for Oriental Medicine Articles based on a XTM so that people can search and use them more effectively than before. Keywords extracted from articles are categorized 4 topics : herbs, prescription, disease, and action. Keywords analysis Ontology is modeled based on 4 topics and their relations, and then represented Topic maps. Next, Article analysis Ontology is consist of title, author, keywords, abstracts and organization Topics from metadata. Keywords and Article analysis Ontology were integrated through Keywords Topic. Korean Medical Article Retrieval System is optimistic in terms on search results supporting semantic navigation in the information service aspects and easier accessibility because all related information are semantically connected with each different DBs.

  • PDF

A Quantitative Analysis on Machine Learning and Smart Farm with Bibliographic Data from 2013 to 2023

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.388-393
    • /
    • 2024
  • The convergence of machine learning and smart farm is becoming more and more important. The purpose of this research is to quantitatively analyze machine learning and smart farm with bibliographic data from 2013 to 2023. This study analyzed the 251 articles, filtered from the Web of Science, with regard to the article publication trend, the article citation trend, the top 10 research area, and the top 10 keywords representing the articles. The quantitative analysis results reveal the four points: First, the number of article publications in machine learning and smart farm continued growing from 2016. Second, the article citations in machine learning and smart farm drastically increased since 2018. Third, Computer Science, Engineering, Agriculture, Telecommunications, Chemistry, Environmental Sciences Ecology, Material Science, Instruments Instrumentation, Science Technology Other Topics, and Physics are top 10 research areas. Fourth, it is 'machine learning', 'smart farming', 'internet of things', 'precision agriculture', 'deep learning', 'agriculture', 'big data', 'machine', 'smart' and 'smart agriculture' that are the top 10 keywords composing authors' keywords in the articles in machine learning and smart farm from 2013 to 2023.

A Bibliometric Analysis of Research Trends in Domestic Integrative Medicine Journals : Focused on Integrative Medicine Research (국내 통합의학 저널의 연구 동향에 대한 계량서지학적 분석 : Integrative Medicine Research를 중심으로)

  • Dae-Jin Kim;Tae-Hyung Yoon;Jong-Rok Lee;Byung-Hee Choi
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.197-210
    • /
    • 2024
  • Purpose : This study aimed to analyze research trends in the field of integrative medicine through a bibliometric analysis of articles published in Integrative Medicine Research (IMR) journal from 2017 to 2022. Methods : Articles published in IMR journal between 2017 and 2022 were searched using the Web of Science database on August 22, 2023. The analysis was performed using the Bibliometrix and Biblioshiny tools in R (version 4.3.1) and VOSviewer (version 1.6.19). Results : The key findings were as follows: average citations per article (9.41), total authors (1,142), single-authored articles (12), average articles per author (0.27), average co-authors per article (5.27), and rate of international co-authorships (15.69 %). The most-cited article was on the cryopreservation of cells or tissues and their clinical applications. The top keyword analysis by author keywords showed that "acupuncture" was the most frequently used keyword (33 times). Co-occurrence network analysis showed 85 high-frequency keywords that appeared five or more times, and the top five keywords by total link strength were "acupuncture," "herbal medicine," "prevalence," "alternative medicine," and "complementary." The study found that, contrary to the trend in complementary and alternative medicine research in Korea, the IMR journal actively conducts intervention studies to provide clinical evidence. Conclusion : In the IMR journal, "acupuncture" was the most frequent of author keywords. The analysis of keyword trend topics over time showed that the keyword "systematic review" continued to appear from 2020 to 2022, and the keyword "clinical practice guideline" appeared for the first time in 2021. In particular, the co-occurrence network analysis highlighted keywords related to intervention research, in contrast to domestic research trends. While this study analyzed only one journal, future studies expanding the category of integrative medicine and increasing the number of journals analyzed may provide further insights.

A Quantitative Review on Deep Learning and Smart Factory from 2010 to 2023

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.203-208
    • /
    • 2024
  • The convergence of deep learning and smart factory is drawing a lot of attentions from not only industrial but also academic circles. The objective of this article is to quantitatively review on deep learning and smart factory from 2010 to 2023. This research analyzed the 138 articles, extracted from the Core Collection of Web of Science, in terms of four dimensions such as the main trend in article publications, the main trend in article citations, the distribution of article publications by research area, and the keywords representing the main contents of published articles. The quantitative review results reveal the following four points: First, the article publications drastically grew from 2019 to 2022 in its annual trend. Second, the article citations have rapidly grown since 2018. Third, Engineering, Computer Science, and Telecommunications are the top 3 research areas composing the 138 articles. Fourth, it is the top 10 keywords such as 'deep', 'learning', 'smart', 'detection', factory', 'data', 'system', 'manufacturing', 'neural', and 'network' that represent the main contents of the 138 articles published from 2010 to 2023 in deep learning and smart factory. These findings revealed by this quantitative review will be significantly useful for deepening and widening relevant future research on deep learning and smart factory.

An Analysis of ESG keywords in the logistics industry using SNA methodology: Using news article and sustainable management report (SNA 기법을 활용한 물류산업 ESG 키워드 분석: 뉴스기사 및 지속가능경영보고서를 활용하여)

  • Ji-Won Lee;Hyang-Sook Lee
    • Korea Trade Review
    • /
    • v.47 no.2
    • /
    • pp.121-132
    • /
    • 2022
  • This study aims to find out the ESG management keywords in the logistics industry through social network analysis using news article and sustainable management reports. In recent years, global climate change and Covid-19 have spurred companies to step up their new management system called ESG management. ESG is a combination of Environment, Social, and Governance. In the past, companies' financial performance was the most important, but in the current investment market, the movement to reflect ESG management factors in investment decisions is strengthening. This study aims to find out degree centrality, betweenness centrality, and closeness centrality through social network analysis after collecting related keywords to derive ESG management issues of logistics companies. This study collected 2,359 news articles searched under the keywords "ESG", "Logistics". In addition, data on ESG activities were also used for analysis by referring to the sustainable management reports of logistics companies. As a result of the analysis of degree centrality, it was found that ESG management of logistics companies is in progress, focusing on small enterprises and eco-friendly keywords, and is concentrated on social responsibility and eco-friendly activities. In the betweenness centrality analysis, logistics companies such as HMM and CJ Logistics were derived in a high ranking. In the closeness centrality analysis, eco-friendly keywords topped the list, while the number of keywords related to governance was relatively small, suggesting that logistics companies need to improve their governance structure.

The JASIST Editorial Board Members' Research Areas and Keywords of JASIST Research Articles (JASIST 편집위원회의 연구분야와 JASIST 논문의 키워드에 관한 연구)

  • Kim, Hyunjung
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.3
    • /
    • pp.227-247
    • /
    • 2014
  • This paper examines the characteristics of the JASIST (Journal of the Association for Information Science and Technology) editorial board members and their research areas through author co-citation analysis, and investigates whether the editorial board members' research areas are related with keywords frequently appeared in the journal's research articles. In the process, research areas of the central members and those appeared most frequently as keywords will be identified. Research areas of the 36 members on the JASIST editorial board are collected and categorized to compare with the categorization of keywords extracted from 169 research articles published in JASIST, 2013. The result shows that members with higher centrality in the co-citation network are related with research areas that are also dominant in the distribution of article keywords. The areas include information behavior and searching, information retrieval, information system design, and bibliometrics.

Coincidence analysis of keywords and MeSH terms in the Korean Journal of Emergency Medical Services (한국응급구조학회지 게재 논문의 중심 단어 분석(2005년-2011년))

  • Lee, Kyoung-Hee;Ham, Young-Lim
    • The Korean Journal of Emergency Medical Services
    • /
    • v.16 no.2
    • /
    • pp.43-51
    • /
    • 2012
  • Purpose : We try to disclose how much the keywords of the papers from the Korean Journal of Emergency Medical Services with Medical Subject Headings(MeSH) terminologies and to understand the major subjects of the recent emergency medical technology research in Korea from keywords. Methods : We analyzed keywords from 524 articles of the Korean Journal of Emergency Medical Services that were published between 2005 and 2011. We investigated frequently used keywords and what percentages of keywords agree with MeSH terms using the MeSH browser. Results : There were on average 3.2 keywords per article. The most frequent key words were AED, Attitude, Cardiopulmonary Resuscitation, CPR, EMT, EMT students, External Defibrillator, Job satisfaction, Knowledge, 119 EMT in order. The number of terms in precise agreement with MeSH headings was 101(19.3%); 327 terms(62.4%) were not found in the MeSH browser and 96 terms(18.3%) partially matched MeSH terms. Conclusion : Many keywords used in the Korean Journal of Emergency Medical Services did not agree with MeSH terms. We conclude that contribution rules should be using MeSH terms and authors should be educated in the proper use of MeSH terms in their research and subsequent publication.

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

Analysis of Shipping and Logistics News Articles using Topic Modeling (토픽모델링을 활용한 해운물류 뉴스 분석)

  • Hee-Young Yoon;Il-Youp Kwak
    • Korea Trade Review
    • /
    • v.46 no.4
    • /
    • pp.61-76
    • /
    • 2021
  • This study focuses on three logistics-related news (Logistics Newspaper, Korea Shipping Gadget, and Korea Shipping Newspaper) in order to present changes in logistics issues, centering on Corona 19, which has recently had the greatest impact in the world. For data collection, two-year news articles in 2019 and 2020 (title, article, content, date, article classification, article URL) were collected through web crawling (using Python's BeautifulSoup, requests module) on the homepages of three representative logistics-related media companies. As for the data analysis methods, fundamental statistical analysis, Latent Dirichlet Allocation (LDA) for topic modeling, and Scattertext were performed. The analysis results were as follows. First, among the three news media related to logistics, the Korea Shipping Newspaper was carrying out the most active media activities. Second, through topic modeling with LDA, eight logistics-related topics were identified, and keywords and significant issues of each topic were presented. Third, the keywords were visually expressed through Scattertext. This is the first study to present changes in the logistics field, focusing on articles from representative logistics-related media in 2019 and 2020. In particular, 2019 and 2020 can be divided into before and after the outbreak of Corona 19, which has had a great impact not only on the logistics field but also on our lives as a whole. For future work, a multi-faceted approach is required, such as comparative studies of logistics issues between countries or presenting implications based on long-term time-series articles.

Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys

  • Rahman, Rana Atta Ur;Juhre, Daniel;Halle, Thorsten
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.381-390
    • /
    • 2018
  • Shape memory alloys(SMAs) have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect(SME) and super-elasticity. SMAs are those alloys that when deform return to their predeformed shape upon heating, they also restore their original shape by removing the load. Research on properties of newly advent of several types of ferrous based shape memory alloys(Fe-SMAs), shows that they have immense potential to be the counterpart of Nitinol(NiTi-SMA). These Fe-SMAs have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol(high processing cost and low cold workability) SMAs. Some of the Fe-SMAs show super-elasticity. Fe-SMAs, especially Fe-Mn-Si alloys have an immense potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. Further research is being conducted on SMAs to improve and impinge better attributes by improving the material compositions, quantifying the SMA phase transition temperature etc. In this research pre-existing Fe-SMAs are categorised and collected in a tabulated form. An analysis is performed that which category is mostly available. Last 50 years data of Fe-SMA publications and US Patents is collected to show its importance in terms of increasing research on such type of alloys to invent different compositions and applications. This data is analysed as per different year groups during last 50 years and it was analysed as per whether the keywords exist in title of an article or anywhere in the article. It was found that different keywords related to Fe-SMAs/categories of Fe-SMAs, almost don't exist in the title of articles. However, these keywords related to Fe-SMAs/categories of Fe-SMAs, exist inside the article but still there are not too many publications related to Fe-SMAs/categories of Fe-SMAs.