• Title/Summary/Keyword: array surface temperature

Search Result 97, Processing Time 0.026 seconds

A Study of the Infrared Temperature Sensing System for Surface Temperature Measurement in Laser Welding(I) - Surface Temperature Profile According to Bead Shape - (레이저용접부 온도측정을 위한 적외선 온도측정장치의 개발에 관한 연구(I) -용융부 형상에 따른 표면온도분포-)

  • 이목영;김재웅
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.62-68
    • /
    • 2002
  • This study investigated the feasibility of penetration depth measurement using infrared temperature sensing on the weld surface. The detection point was optimized by FEM analysis in the laser keyhole welding. The profile of the weld surface temperature was measured using infrared detector array. Surface temperature behind the weld pool is proportional or exponentially proportional to penetration depth and bead width. From the results, the monitoring device of surface temperature using infrared detector array was applicable fur real time penetration depth control.

Diode Temperature Sensor Array for Measuring and Controlling Micro Scale Surface Temperature (미소구조물의 표면온도 측정 및 제어를 위한 다이오드 온도 센서 어레이 설계)

  • Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1231-1235
    • /
    • 2004
  • The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, Thermal finger print, Micro PCR(polymer chain reaction), ${\mu}TAS$ and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 ${\times}$ 32 array of diodes (1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm ${\times}$ 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters ($1K{\Omega}$) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  • PDF

Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature (손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.

A Study on the Working Condition Effecting on the Maximum Working Temperature and Surface Roughness in Side Wall End Milling Using Design of Experiment (실험계획법을 이용한 엔드밀 가공 시 최대가공온도와 표면조도에 미치는 가공조건에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Baek, Hwang-Soon;Choi, Seok-Chang;Park, Il-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • To find the working condition is one of the important factors in precision machining. In this study, we analyzed maximum working temperature by infra-red camera and surface roughness in side wall end milling using design of experiment (DOE): RSM(response surface methodology), ANOM(analysis of means) and ANOVA(analysis of variance) by table of orthogonal array. ANOM and ANOVA are well adapted to select sensitivity of design variables for maximum working temperature and surface roughness. The effective design variables and their levels should be determined using ANOM, ANOVA. RSM is presented 2nd order approximation polynomial of maximum working temperature and surface roughness is composed with design variables. Therefore, it is expected that the proposed procedure using design of experiment : table of orthogonal array, ANOM, ANOVA and RSM can be easily utilized to solve the problem of working condition.

  • PDF

Fabrication and Performance Evaluation of Thin Film RTD Temperature Sensor Array on a Curved Glass Surface (곡면 유리 표면 위에서 박막 측온저항체 온도센서 어레이 제작 및 성능 평가)

  • Ahn, Chul-Hee;Kim, Hyoung-Hoon;Park, Sang-Hu;Son, Chang-Min;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.34-39
    • /
    • 2011
  • This paper presents a novel direct fabrication method of the thin metal film RTD temperature sensor array on an arbitrary curved surface by using MEMS technology to measure a distributed temperature field up to $300^{\circ}C$ without disturbing a fluid flow. In order to overcome the difficulty in the three dimensional photography of sensor patterning, the UV pre-irradiated photosensitive dry film resist technology has been developed newly. This method was applied to the fabrication of the temperature sensor array on a glass tube, which is arranged parallel and transverse to a main flow. Gold was used as a temperature sensing material. The resistance change was measured in a thermally controlled oven by increasing the environmental temperature. The linear increase in resistance change and a constant slope were obtained. Also, the sensitivity of each RTD temperature sensor was evaluated.

A Study of the Infrared Temperature Sensing System far Measuring Surface Temperature in Laser Welding(II) - Effect of the System Parameter on Infrared Temperature Measurement - (레이저용접부 온도측정을 위한 적외선 온도측정장치의 개발에 관한 연구 (II) - 적외선 온도측정에서 제인자의 영향 -)

  • 이목영;김재웅
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2002
  • This study investigated the effect of the system parameters on penetration depth measurement using infrared temperature sensing system. The distance from focusing lens to detector was varied to diminish the error in measuring weld bead width. The effect of bead surface shape on measured surface temperature profile was evaluated using specimen heated by electric resistance. The measuring distance from laser beam was changed to optimize the measuring point. The results indicated that the monitoring device of surface temperature using infrared detector array was applicable to real time penetration depth control.

Temperature dependence of the effective anisotropy in Ni nanowire arrays

  • Meneses, Fernando;Urreta, Silvia E.;Escrig, Juan;Bercoff, Paula G.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1240-1247
    • /
    • 2018
  • Magnetic hysteresis in Ni nanowire arrays grown by electrodeposition inside the pores of anodic alumina templates is studied as a function of temperature in the range between 5 K and 300 K. Nanowires with different diameters, aspect ratios, inter-wire distance in the array and surface condition (smooth and rough) are synthesized. These microstructure parameters are linked to the different free magnetic energy contributions determining coercivity and the controlling magnetization reversal mechanisms. Coercivity increases with temperature in arrays of nanowires with rough surfaces and small diameters -33 nm and 65 nm- when measured without removing the alumina template and/or the Al substrate. For thicker wires -200 nm in diameter and relatively smooth surfaces- measured without the Al substrate, coercivity decreases as temperature rises. These temperature dependences of magnetic hysteresis are described in terms of an effective magnetic anisotropy $K_a$, resulting from the interplay of magnetocrystalline, magnetoelastic and shape anisotropies, together with the magnetostatic interaction energy density between nanowires in the array. The experimentally determined coercive fields are compared with results of micromagnetic calculations, performed considering the magnetization reversal mode acting in each studied array and microstructure parameters. A method is proposed to roughly estimate the value of $K_a$ experimentally, from the hysteresis loops measured at different temperatures. These measured values are in agreement with theoretical calculations. The observed temperature dependence of coercivity does not arise from an intrinsic property of pure Ni but from the nanowires surface roughness and the way the array is measured, with or without the alumina template and/or the aluminum support.

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea (황해 중앙부에서 수중음속의 장기간 모니터링 결과)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.

A Study on the Characteristics of Soot Formation and Oxidation in Free Fuel Droplet Array

  • Lee, Myung-Jun;Kim, Jong-Youl;Yeom, Jeong-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.851-860
    • /
    • 2002
  • In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.

Fabrication and Performance Evaluation of Temperature Sensor Matrix Using a Flexible Printed Circuit Board for the Visualization of Temperature Field (온도장 가시화를 위한 연성회로기판을 이용한 온도센서 어레이 제작 및 성능평가)

  • Ahn, Cheol-Hee;Kim, Hyung-Hoon;Cha, Je-Myung;Kwon, Bong-Hyun;Ha, Man-Yeong;Park, Sang-Hu;Jeong, Ji-Hwan;Kim, Kui-Soon;Cho, Jong-Rae;Son, Chang-Min;Lee, Jung-Ho;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.17-21
    • /
    • 2010
  • This paper presents the fabrication and performance measurement of a temperature sensor array on a flexible substrate attachable to a curved surface using MEMS technology. Specifically, the fabrication uses the well-developed printed circuit board fabrication technology for complex electrode definition. The temperature sensor array are lifted off with a $10{\times}10$ matrix in a $50\;mm{\times}50\;mm$ to visualize temperature distribution. Copper is used as temperature sensing material to measure the change in resistances with temperature increase. In a thermal oven with temperature control, the temperature sensor array is Characterized. The constant slope of resistance change is obtained and temperature distribution is measured from the relationship between resistance and temperature.