• Title/Summary/Keyword: array optimizing

Search Result 65, Processing Time 0.028 seconds

2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging

  • Choi, Jae Hoon;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2014
  • A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

STUDY ON THE OPTIMAL PLANAR ARRAY STRUCTURE WITH TRIANGULAR LATTICE FOR SIDE-LOBE REDUCTION (삼각 격자구조를 갖는 평면배열 안테나의 부엽 레벨 감소를 위한 최적 평면배열 형상에 관한 연구)

  • 배지훈;성낙선;이태윤;김종면;표철식
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.250-254
    • /
    • 2002
  • In this paper, we design an optimized planar array structure with triangular lattice for side-lobe reduction using a genetic algorithm. A constraint optimization is implemented by optimally removing some outer array elements far from the array center. It is shown that only the proper array shape without optimizing the magnitudes and phases of each array antenna can give low side-lobe level with a slight main beam broadening.

  • PDF

Design of an Optimal Planar Array Structure with Uniform Spacing for Side-Lobe Reduction

  • Bae, Ji-Hoon;Seong, Nak-Seon;Pyo, Cheol-Sig;Park, Jae-Ick;Chae, Jong-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2003
  • In this paper, we design an optimal planar array geometry for maximum side-lobe reduction. The concept of thinned array is applied to obtain an optimal two dimensional(2-D) planar array structure. First, a 2-D rectangular array with uniform spacing is used as an initial planar array structure. Next, we modify the initial planar array geometry with the aid of thinned array theory in order to reduce the maximum side-lobe level. This is implemented by a genetic algorithm under some constraint, minimizing the maximum side-lobe level of the 2-D planar array. It is shown that the optimized planar array structure can achieve low side-lobe level without optimizing the excitations of the array antennas.

A Design of Solar Array Regulator for LEO Satellites (저궤도 인공위성용 태양전력 조절기 설계)

  • Park, Heesung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1432-1439
    • /
    • 2015
  • The solar array regulator supplies the electric power to the battery and the other units of a satellite by controlling the operating point of a solar array. In this paper, the solar array regulator composed with analog circuits is proposed. The solar array regulator has three modes. The first is a maximum power point tracking mode for harvesting the maximum photovoltaic power generation. The second is a power limitation mode which is designed for optimizing the volume and weight of the solar array regulator by preventing the excessive power conversion. The last constant voltage mode is proposed to keep the Li-Ion battery is not over-charge. The small signal model of the solar array regulator which has the reversed input and output variables in comparison with conventional converter is established and the stability is analysed. Finally, the proposed design of the solar array regulator is verified by experiments.

Optimization of Thinned Antenna Arrays using a Least Square Method

  • Chang Byong Kun;Dae Jeon Chang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.165-168
    • /
    • 1999
  • This paper concerns a least square approach to optimizing a thinned antenna array with respect to antenna spacing to improve the sidelobe performance. A least square method based on a modified version of the modified perturbation method is proposed to efficiently synthesize an optimum pattern in a thinned array. It is demonstrated that the array performance improves with the proposed method, compared with the conventional method.

  • PDF

An Optimal Beamforming Technique for Conformal Array (Conformal Array를 위한 최적 빔 형성 기법)

  • 김준환;김기만
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.43-46
    • /
    • 1999
  • Various techniques for optimizing the performance indices of sonar arrays have been discussed, Maximizing the directivity or beamforming technique with constraints have been studied, however these performances are adapted on the condition of isotropic linear array. In this paper we discuss the problems resulting from application of conformal array by using previous techniques. Finally, we could get a desired beam pattern after use of the compensated weight vector to solve the problems.

  • PDF

Combined and Product Array Approaches in Simultaneous Optimization of Multiple Responses (다특성 동시최적화를 위한 통합배열과 교차배열 접근의 비교연구)

  • Lee, Jae-Hoon;Park, Sung-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.93-101
    • /
    • 2006
  • Robust parameter design is an off-line production technique for reducing variation and improving the quality of products and processes by using product arrays. However, the use of the product arrays usually requires a large number of runs. To overcome the drawback of the product array, the combined array can be used. Also optimizing multiple responses is increasingly important in industry. Using simultaneous optimization measures, we can deal with the multiple response case. In this paper we compare the simultaneous optimization using the Taguchi's product array with using the combined array. And models possible to set on combined arrays are also investigated and compared with the cases of product arrays.

Array Testing of TFT-LCD Panel with Integrated Gate Driver Circuits

  • Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.68-72
    • /
    • 2020
  • A new method for array testing of TFT-CD panel with the integrated gate driver circuits is presented. As larger size/high resolution TFT-LCD with the peripheral driver circuits has emerged, one of the important problems for manufacturing is array testing on the panel. This paper describes the technology of detecting defective arrays and optimizing the array testing process. For the effective characterization of pixel array, the pixel storage capability is simulated and measured with voltage imaging system. This technology permits full functional testing during the manufacturing process, enabling fabrication of large TFT-LCD panels with the integrated driver circuits.

A Study on Optimization of Structure for Hexagon Tile Sub-array Antenna System (Hexagon 타일 부배열 안테나 시스템 구조 최적화에 관한 연구)

  • Jung, Jinwoo;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.129-132
    • /
    • 2022
  • In this paper, a technique for optimizing the sub-array system structure that can minimize the side lobe level of the phased-array antenna is proposed. Optimization of the proposed array antenna structure is to adjust the spacing between sub-arrays and sub-arrays by using a hexagonal array structure of one sub-array and a hexagonal sub-array for six hexagonal arrays, and thus the entire phased array antenna system of the radiation pattern was optimized. Compared to the 2-dimensional planar antenna system, the proposed technique maintains a gain of 24.3 dBi and a half-power beam-width of 8.46 degrees without change, and only reduces -3.4 dB and -6.5 dB in the x-axis and y-axis directions, respectively.

Chemical Sensors Array Optimization Based on Wilks Lamda Technique (Wilks Lamda 방법을 이용한 화학센서 어레이 최적화)

  • Jeon, Jin-Young;Shin, Jeong-Suk;Yu, Joon-Boo;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2014
  • Optimizing the performance of a composite sensor array is necessary when the number of sensors to choose from is large. In this paper, we present a chemical sensors array optimization method using Wilks Lamda algorithm applicable a device to detect low concentration of alcohol from driver's exhale breath for interlocking engine ignition preventing drink-driving. More than 20 chemical sensors fabricated different synthetic stuffs and heater temperatures by collaborators were nominated, 5 sensors were selected for optimal sensors array using the method, and alcohol samples were well discriminated from the interference gases inside the vehicle. It has been confirmed by Principal Component Analysis (PCA).