• 제목/요약/키워드: array model

Search Result 962, Processing Time 0.022 seconds

Improved Viewing Quality of 3-D Images in Computational Integral Imaging Reconstruction Based on Lenslet Array Model

  • Shin, Dong-Hak;Lee, Byoung-Ho;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.521-524
    • /
    • 2006
  • In this letter, we propose a novel computational integral imaging reconstruction technique based on a lenslet array model. The proposed technique provides improvement of viewing images by extracting multiple pixels from elemental images according to ray tracing based on the lenslet array model. To show the feasibility of the proposed technique, we analyze it according to ray optics and present the experimental results.

  • PDF

Design of an Equivalent Antenna Model for Array Antennas Using Open-Ended Waveguide (열린 도파관을 이용한 배열안테나의 전자파 해석 등가 모델링 기법)

  • Lee, Dongeun;Byun, Gangil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.525-532
    • /
    • 2015
  • In this paper, we propose an equivalent model of array antennas that use open-ended waveguides for effective EM simulation. We first investigate an individual element that consists of an open-ended waveguide and square ground plane. The waveguide length, aperture size, and ground size of the individual element are adjusted to give a similar radiation pattern to that of the individual element of the original antenna. We then apply the designed equivalent model to two different types of array antennas, such as a microstrip patch array and a waveguide array antenna. Comparison of the simulation results using the equivalent model with the results obtained with the original antenna reveals a difference in gain of less than 0.2 dB and a difference in half power beam width(HPBW) of less than $1^{\circ}$. The designed equivalent model is then mounted on a simple aircraft, and the simulation results are again compared to results from the original antenna. We find a 60 % reduction in simulation resources and time when compared with the original antenna model.

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

Equivalent Circuit Modelling of FFR Transducer Array for Sonar System Design (소나 시스템 설계를 위한 FFR 트랜스듀서 어레이의 등가회로 모델링)

  • Kim, In-Dong;Choi, Seung-Soo;Lee, Haksue;Lee, Seung Woo;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.629-635
    • /
    • 2017
  • Free-Flooded Ring (FFR) transducer array for use in Sonar system can be driven with large amplitude in a wide frequency band due to its structural characteristics, in which two resonances of a ring mode (1st radial mode) and an inner cavity vibration mode occur in a low frequency band. Since its sound wave generation characteristics are not influenced by the water pressure, the FFR transducer array is widely used in the deep sea. So FFR has been recognized as a low-frequency active sound source and has received much attention ever since. In order to utilize the FFR transducer array for SONAR systems in military and industrial applications, its equivalent electric circuit model is necessary especially to design the matching circuit between the driving power amplifier and the FFR transducer array. Thus this paper proposes the equivalent electric circuit model of FFR transducer array by using measured values of parameter, and suggest the improved method of parameter identification. Finally it verifies the effectiveness of the proposed circuit model of FFR transducer array by experimental measurements.

Wideband Capon Beamforming for a Planar Phased Radar Array with Antenna Switching

  • Lee, Moon-Sik
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.321-323
    • /
    • 2009
  • A wideband beamforming algorithm for estimating the azimuth angle, elevation angle, velocity, and range using a planar phased radar array with antenna switching is proposed. It uses the time-variant steering vector model. Simulation results illustrating the performance of the proposed beamformer are presented.

  • PDF

Output Density Increasing Design for Railway Vehicle Traction Motor using Halbach Magnet Array Structure (Halbach magnet array 구조를 이용한 철도차량용 구동 전동기의 출력밀도 향상 설계 방법)

  • Lee, Ki-Doek;Jun, Hyun-Woo;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1732-1736
    • /
    • 2014
  • Generally, traction motors for railway vehicles are inferior to that of electric vehicle in terms of output density. Traction motors for railway vehicles are relatively free of spatial constraints than motors electric vehicles, but in terms of whole system efficiency, increasing output density of traction motor is helpful. In this paper, using Halbach magnet array structure, output density of traction motor for 40kW class tram was elevated. This paper introduce detailed design process of the Halbach magnet array structure applied model, and check the affects on output characteristics by parameters like rotor shape, airgap diameter and pole ratio. Also, electrical output characteristics were compared between typical SPMSM model and Halbach magnet array model, which has same output size.

An Evaluation of Three Dimensional Finite Element Model on the Strength Prediction of Particles Reinforced MMCs (입자강화형 금속복합재료의 강도 예측에 관한 3차원 유한요소 모델의 평가)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.124-138
    • /
    • 1998
  • Particles reinforced MMCs have many advantages over monolithic metals including a higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance. SiC$_p$/A16061 composites have good results in its mechanical properties. This work investigates SiC$_p$/A16061 composites in the microscopic view and compares the analytical results with the experimental ones. The discrepancy of the material properties between the reinforced particle, SiC$_p$, and the matrix material, A16061 appears to be so significant. Especially the coefficient of thermal expansion(CTE) of A16061 is 5 times larger than that of SiC$_p$. Thermal residual stress in MMCs is induced at high temperatures. The shape of particle is various but the theoretical model is not able to consider the nonuniform shape. Particle distribution is not homogeneous in experimental specimen. However, it is assumed to be homogeneous in simulation model. The shapes of particles are assumed to be not only perfect global but hexahedral shapes. The types of particle distribution are two - simple cubic array(SC array) and face-centered cubic array(FCC array).

  • PDF

Fluidelastic instability of a tube array in two-phase cross-flow considering the effect of tube material

  • Liu, Huantong;Lai, Jiang;Sun, Lei;Li, Pengzhou;Gao, Lixia;Yu, Danping
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2026-2033
    • /
    • 2019
  • Fluidelastic instability of a tube array is a key factor of the security of a nuclear power plant. An unsteady model of the fluidelastic instability of a tube array subjected to two-phase flow was developed to analyze the fluidelastic instability of tube bundles in two-phase flow. Based on this model, a computational program was written to calculate the eigenvalue and the critical velocity of the fluidelastic instability. The unsteady model and the program were verified by comparing with the experimental results reported previously. The influences of void fraction and the tube's material properties on the critical velocity were investigated. Numerical results showed that, with increasing the void fraction of the two-phase flow, the tube array becomes more stable. The results indicate that the critical velocities of the tube array made of stainless are much higher than those of the other two tube arrays within void fraction ranging from 20% to 80%.

Reliability Evaluation of Constant Pressure Mechanism on Phased Array Ultrasonic Testing for Wind Turbine Blade (위상배열 탐상검사법을 이용한 풍력발전용 블레이드의 일정가압 메커니즘 신뢰성 평가)

  • Nam, Mun Ho;Chi, Su Chung;Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.236-245
    • /
    • 2017
  • Purpose: There is no established inspection system for composite wind blade during the fabrication stage even though the blades are one of the most important part at wind generation system, but phased array ultrasonic testing method has been continuously studied about wind turbine blade with composite. When wind turbine blade with complex shape by phased array probe is inspected, it is necessary to study for system keeping constant pressure using pressure device. Methods: In this paper, we propose constant pressure device for inspecting wind turbine blade by phased array ultrasonic test method. Design of the device controller is based on Hunt-Crossley model. We evaluate reliability of phased array ultrasonic inspection result that applicated constant pressure device. Result: Defect indication is precise and its error is small when constant pressure mechanism based on Hunt-Crossley model was used. Conclusion: When inspection is progressed using constant pressure mechanism, the reliability of composite wind blade inspection can be improved.

A Comparative Study on Surrogate Models and Sensitivity Analysis for Structure Design of Automatic Salt Collector Using Orthogonal Array Experiment (직교배열실험을 이용한 자동채염기 구조설계의 민감도해석과 대리모델 비교 연구)

  • Song, Chang Yong;Lee, Dong-Jun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.138-146
    • /
    • 2020
  • The paper deals with comparative study of characteristics of surrogate models and sensitivity evaluation using design of experiments in order to enhance and analysis the structure design of an automatic salt collector under various design load conditions. Orthogonal array design based on numerical analysis was used for the design of experiments. The thickness sizing variables of main structure member were considered the design factors, and the output responses were selected from the strength performances as well as the weight. The quantitative effects on responses for each design factor were evaluated from the orthogonal array experiment. Optimum design case was also identified to improve the strength performances with weight minimization. Using the orthogonal array experiment. various surrogate models such as response surface model, Kriging model, and Chebyshev orthogonal polynomial were generated. The orthogonal array experiment results were validated by the surrogate modeling results. The most suitable surrogate model was the response surface model for the exploration of design space of the automatic salt collector.