• Title/Summary/Keyword: aromatic plant

Search Result 194, Processing Time 0.027 seconds

The Importance of Essential-Oils in the Green Synthesis of Silver Nanoparticles

  • Barzinjy, Azeez Abdullah
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.284-297
    • /
    • 2022
  • The antibacterial activity of metallic nanoparticles (NPs), especially silver (Ag), has been investigated during the course of time in various chemical reactions for antibiotics free agents. Green synthesis of metallic NPs using either microorganisms or plant-extracts has appeared as a simple and replacement to chemical and physical methods. The synthesizing of these NPs through ecofriendly methods signifies an exceedingly applicable approach for offering economical, preferring scalability and possessing negligible ecological influences. Essential-oils are among the subordinate metabolites of plants and their antibacterial anti-inflammatory characteristics have been investigated widely and are commonly attained from the aromatic plants. The usage of essential-oils as reducing agents in biosynthesizing of Ag NPs bring together the interaction of a vital antibacterial agent that simplify the nucleation and growth process within the NPs formation. This review article is offering a progressive process of Ag NPs synthesis using essential oils along with proposing the most applicable formation mechanisms and their antibacterial activities.

P56 LCK Inhibitor Identification by Pharmacophore Modelling and Molecular Docking

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.200-206
    • /
    • 2007
  • Pharmacophore models for lymphocyte-specific protein tyrosine kinase (P56 LCK) were developed using CATALYST HypoGen with a training set comprising of 25 different P56 LCK inhibitors. The best quantitative pharmacophore hypothesis comprises of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic aliphatic and one ring aromatic features with correlation coefficient of 0.941, root mean square deviation (RMSD) of 0.933 and cost difference (null cost-total cost) of 66.23. The pharmacophore model was validated by two methods and the validated model was further used to search databases for new compounds with good estimated LCK inhibitory activity. These compounds were evaluated for their binding properties at the active site by molecular docking studies using GOLD software. The compounds with good estimated activity and docking scores were evaluated for physiological properties based on Lipinski's rules. Finally 68 compounds satisfied all the properties required to be a successful inhibitor candidate.

Xanthone attenuates mast cell-mediated allergic inflammation

  • AYE, AYE;Jeon, Yong-Deok;Song, Young-Jae;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.123-123
    • /
    • 2019
  • Xanthone is a kind of polyphenolic compounds that contain a distinctive chemical structure with a tricyclic aromatic ring found in a few higher plant families e.g. gentian root. This compound had a variety of biological activity, for instance antioxidant, antibacterial, anti-inflammatory, and anticancer effects. However, the effect of xanthone on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, the aim of this study was to elucidate the anti-allergic inflammatory effects and the underlying molecular mechanism of xanthone in PMACI-stimulated human mast cells-1 (HMC-1). In this result, xanthone treatment decreased the production of histamine, pro-inflammatory cytokines such as tumor necrosis factor-a (TNF-${\alpha}$), IL-6, and IL-8 and expressions of TSLP in PMACI-stimulated HMC-cells. In addition, xanthone significantly suppressed the phosphorylation of MAPKs and the activation of NF-${\kappa}B$ signal pathway in activated mast cells. Furthermore, xanthone inhibited the activation of caspase-1, an IL-$1{\beta}$ converting enzyme, in PMACI-stimulated HMC-1 cells. These findings provide evidence that xanthone could be a potential therapeutic agent for allergy-related inflammatory disorders.

  • PDF

o-DGT as a Biomimic Surrogate to Assess Phytoaccumulation of Phenanthrene in Contaminated Soils (o-DGT를 생체모사 대표물질로 이용한 오염토양에서 phenanthrene의 식물축적 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.6
    • /
    • pp.16-25
    • /
    • 2019
  • Anthropogenic polycyclic aromatic hydrocarbons (PAHs) are formed by the incomplete combustion of fuels and industrial waste. PAHs can be widely exposed to the environment (water, soil and groundwater). PAHs are potentially toxic, mutagenic and/or carcinogenic. Fundamental studies such as biota uptake (e.g., earthworm and plant) of PAHs are highly needed. It is necessary to develop alternative ways to evaluate bioavailability of PAHs instead of using living organisms because it is time-consuming, difficult to apply in the field, and also exaction method is tedious and time-consuming. In this study, sorption behaviors of phenanthrene were evaluated to predict the fate of PAHs in soils. Moreover, bioaccumulation of PAHs in an artificially contaminated soil was evaluated using pea plant (Pisum sativum) as a bioindicator. A novel passive sampler, organic-diffusive gradient in thin-film (o-DGT) for PAHs was newly synthesized, tested as a biomimic surrogate and compared with plant accumulation. Sorption partitioning coefficient (KP) and sorption capacity (KF) were in the order of natural soil > loess corresponding to the increase in organic carbon content (foc). Biota-to-soil accumulation factor (BSAF) and DGT-to-soil accumulation factor (DSAF) were evaluated. o-DGT uptake was linearly correlated with pea plant uptake of phenanthrene in contaminated soil (R2=0.863). The Tenax TA based o-DGT as a biomimic surrogate can be used for the prediction of pea plant uptake of phenanthrene in contaminated soil.

Depolymerization of Kraft Lignin at Water-Phenol Mixture Solvent in Near Critical Region (물-페놀 혼합 용매의 근임계 하에서의 크래프트 리그닌의 저분자화)

  • Eom, Hee-Jun;Hong, Yoon-Ki;Chung, Sang-Ho;Park, Young-Moo;Lee, Kwan-Young
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • Plant biomass has been proposed as an alternative source of petroleum-based chemical compounds. Especially, aromatic chemical compounds can be obtained from lignin by depolymerization processes because the lignin consist of complex aromatic materials. In this study, kraft lignin, the largest emitted substance among several kinds of lignin in Korea, was used as a starting material and was characterized by solid-state $^{13}C$-Muclear Magnetic Resonance($^{13}C$-NMR), Fourier Transform Infrared Spectroscopy(FT-IR), Elemental Analysis(EA). The depolymerization of kraft lignin was studied at water-phenol mixture solvent in near critical region and the experiments were conducted using a batch type reactor. The effects of water-to-phenol ratio and reaction temperature($300-400^{\circ}C$) were investigated to determine the optimum operating conditions. Additionally, the effects of formic acid as a hydrogen-donor solvent instead of $H_2$ gas were examined. The chemical species and quantities in the liquid products were analyzed using gas chromatography-mass spectroscopy(GC-MS), and solid residues(char) were analyzed using FT-IR. GC-MS analysis confirmed that the aromatic chemicals such as anisole, o-cresol(2-methylphenol), p-cresol(4-methylphenol), 2-ethylphenol, 4-ethylphenol, dibenzofuran, 3-methyl cabazole and xanthene were produced when phenol was added in the water as a co-solvent.

Plant Leave as an Indicator for Pollution by Hydrocarbons and Heavy Metals in Al-Zubair City, Southern Iraq

  • Sajjad W. Jaafar;Sattar J.Al. Khafaji
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • The potential sources and spatial distribution of heavy metals and polycyclic aromatic hydrocarbons (PAHs) were investigated in the leaf plants of Al-Zubair city. A total of 14 samples of conocarpus lancifolius plant leaf were collected and analyzed for their heavy metals and PAHs content using inductively coupled plasma mass spectrometry (ICP-MS) and a 7890 Agilent capillary gas chromatograph (GC) respectively. Bioaccumulation factor calculation revealed the highest pollution of heavy metals , due to the activity of a petrochemical in the area. The diagnostic ratio of Ant/(Phe+Ant), BaA/BaA+Chr), In/(In+BghiP), Flu/Pyr, FlA/FlA+Pyr), FlA/FlA+Pyr), ∑LMW/∑HMW are commonly used for determining the origin and source of PAHs in various environmental media. The diagnostic ratio indicated the anthropogenic origin. PAHs with five-to-six membered rings were dominant in the plant leaf, which likely results from anthropogenic activities. The leaves of C. lancifolius have a preponderance of high molecular weight PAHs compared to low molecular weight PAHs, indicating a combustion origin (car exhaust, petroleum emissions, and fossil fuel). C. lancifolius leaves are a reliable indication of atmospheric PAHs absorption. The background level of heavy metals in the city (or the near environment) is in the order of Fe > Cu > Ni > Cr. On the other hand, the bioaccumulation in plant leaves showed greater tendencies as follows: Co>Cd>Zn=As>Cu>Mn>Ni>Pb>Cr>Fe. Cobalt showed high bioaccumulation, indicating strong uptake of Co by plant leaves. These findings point to human activity and car emissions as the primary sources of roadside vegetation pollution in Al-Zubair city.

Effects of cytokinins, GA, and IBA on in vitro propagation of Vitex negundo var. insica (좀목형 (Vitex negundo var. insica) 신초의 기내증식에 미치는 cytokinin, GA 및 IBA의 영향)

  • Han, Mu-Seok;Moon, Heung-Kyu;Park, So-Young;Kim, Yong-Wook;Son, Suk-Gu
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.53-58
    • /
    • 2011
  • To develop an efficient micropropagation technique for Vitex negundo var. insica, which is known as aromatic and medicinal tree, the effects of various plant growth regulators (PGRs) on in vitro shoot proliferation and rooting were evaluated using the newly-developed shoots of a 3-year-old tree. Multiple shoot induction was achieved effectively on WPM (woody plant medium) supplemented with 0.5-2.0 mg/L BA, and the highest shoot number (7.9/explant) was obtained at the concentration of 1.0 mg/L BA. Typically 1 or 2 superior shoots (about 3.4 cm) were induced on hormone-free WPM. Combined treatment of BA 2.0 + GA 0.5 mg/L appeared to effective on shoot proliferation and rooting. Plant growth regulators added in shoot proliferation medium had strong impact on subsequent rooting as well. Overall, shoots induced by BA treatment resulted in high rooting rates while the effect was reduced gradually by ascending BA levels. TDZ of low concentration also revealed a similar tendency as BA, but the rooting ability was strongly inhibited at the concentration of 0.5 mg/L, and rooting was never observed at the concentrations higher than 0.5 mg/L. Combined treatment of BA and IBA had positive influence in both shoot proliferation and rooting. These results suggest that Vitex negundo var. insica could be effectively micropropagated via axillary bud cultures.

Three New Non-reducing Polyketide Synthase Genes from the Lichen-Forming Fungus Usnea longissima

  • Wang, Yi;Wang, Juan;Cheong, Yong Hwa;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Usnea longissima has a long history of use as a traditional medicine. Several bioactive compounds, primarily belonging to the polyketide family, have been isolated from U. longissima. However, the genes for the biosynthesis of these compounds are yet to be identified. In the present study, three different types of non-reducing polyketide synthases (UlPKS2, UlPKS4, and UlPKS6) were identified from a cultured lichen-forming fungus of U. longissima. Phylogenetic analysis of product template domains showed that UlPKS2 and UlPKS4 belong to group IV, which includes the non-reducing polyketide synthases with an methyltransferase (MeT) domain that are involved in methylorcinol-based compound synthesis; UlPKS6 was found to belong to group I, which includes the non-reducing polyketide synthases that synthesize single aromatic ring polyketides, such as orsellinic acid. Reverse transcriptase-PCR analysis demonstrated that UlPKS2 and UlPKS4 were upregulated by sucrose; UlPKS6 was downregulated by asparagine, glycine, and alanine.

A Study on the Development of VOCs Detector

  • Suh, Jung-Ho;Suh, Myung-Gyo;Hong, Won-Hak;Lee, Young-Sei
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.139-141
    • /
    • 2004
  • Emission of volatile organic compounds (VOCs) are one of the popular issues of air pollution in Korea, especially in Ulsan city, where much chemical plants are located. It is necessary to detect the VOCs precisely in order to control the air pollution during the plant operation. In general, to examine the concentration of VOCs, gas chromatography (GC) is used. However, most plant operators are using the easy operating handy VOCs detector, which is imported, because GC is difficult to treat and the installation price is high although it is very useful equipment. Therefore, the development of the VOCs detector becomes one of the urgent issues. In this study, sensing characteristics of selected VOCs for the development of VOCs detector was investigated. Semiconductor sensor and several VOCs such as aliphatic, aromatic, and non-homogeneous hydrocarbons were used for the experiment. Through the various experiments, sensor used in the experiment has shown high linearity and sensitivity for most VOCs in the range of 1 -500 ppm concentration.

  • PDF

Physiological Study of Silkworm due to Aromatical Plants (방향식물이 누에 생리에 미치는 영향)

  • 김낙정;전대략
    • Journal of Sericultural and Entomological Science
    • /
    • v.2
    • /
    • pp.33-39
    • /
    • 1962
  • The results for the investigation of the various aromatic plants applied diets on silkworm raising from spring to autumn crops are found as followings. 1. There was no difference between the chemical menthol solution (1.0%) enriched diet and the normal diet for silkworm physiology. Neither injury nor advantage was obtained from the investigation. 2. It was found that there was no danger to use the mulberry leaves as silkworm diet by planting Mentha arvensis L. in the vacansy of mulberry farm, and no worse effect was found by rubbing the leaves of Mentha arvensis L. to the surface of mulberry leaves before feeding to silkworm. 3. For the investigation due to Perilla Ocymoides var application in stead of menthol plant ascribed in Paragraph (2) was obtained the same result. 4. As a conclusion of the study, the plantation of the both aromatical plants with mulberry trees is harmless for silkworm growing even though farmers worry about these to plant together with mulberry tree on mulberry farm.

  • PDF