• Title/Summary/Keyword: argumentation level

Search Result 47, Processing Time 0.022 seconds

An Analysis on argumentation structure development of preservice teachers through argumentative writing on earth science related SSI (지구과학 관련 사회적 문제(socio-scientific issue)와 관련된 논증적 글쓰기를 통해 알아본 예비교사들의 논증구조 발달 분석)

  • Wee, Soo-Meen;Yoon, Ji-Young;Lim, Sung-Man
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.1
    • /
    • pp.11-23
    • /
    • 2014
  • The purpose of this study is to analyze the degree of argumentation structure development and factors of development of preservice teachers through SSI related argumentative writings. The study was conducted with 16 preservice teachers that students taking elementary science education theory class in K university located in Chungbuk. The testees wrote six SSI related argumentative writings (once a week), and we examined the degree of argumentation structure development and the change in the recognition of SSI of the preservice teachers by comparing the writings before and after the experiments. The experimental results showed that argumentation structure of the preservice teachers'writings improved and argument level (argument capability) of them also increased as the number of writing was increased. Factors that affect the argumentation structure improvement are mainly argumentation structure education, a number of writings, feedbacks, and subjects related to SSI. In this aspect, the argumentative writing on SSI has the effect of developing scientific sophistication and enhancing the decision-making power of students, and it has positive impacts in science education.

Characteristics of Argumentation in Science Instruction Using Internet Messenger: A Case of Scientifically Gifted Students in Apprenticeship (인터넷 메신저를 활용한 과학 수업에서 나타나는 학생들의 논변활동의 특성: 과학 영재 학생들의 사사과정의 사례)

  • Lee, Go-Eun;Choe, Seung-Urn;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.625-636
    • /
    • 2010
  • Scientifically gifted students' argumentation characteristics in science instruction using the internet messenger was investigated. Participants in this study were five 9th grader in middle school in Seoul. They attended a program offered by the Science-Gifted Education Center, Seoul National University. Internet messenger (instant messenger) was used for instruction, and data were collected by saved messages. Toulmin's argument model was used as a tool for analyzing students' argumentation, and the argumentation patterns were categorized by sequence of argument operations. The results showed that in case of learner-centered instructions, there were lots of relatively higher-level argumentations appeared. On the contrary, teacher-centered instruction ended up with few or lower-level argumentation. Also there were four types of argumentation patterns emerged throughout the whole instructions. Findings suggest that the development of an instruction models and the selection of an appropriate topic be necessary for promoting the interaction between teacher and students as well as enhancing the students' ability of argument.

An Analysis on the Level of Elementary Gifted Students' Argumentation in Scientific Inquiry (초등학교 영재 학생들의 탐구 활동에서 나타나는 논증 과정 평가 및 분석)

  • Lim, Jae-Keun;Song, Yun-Mi;Song, Mi-Sun;Yang, Il-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.4
    • /
    • pp.441-450
    • /
    • 2010
  • The purpose of this study was to evaluate the level of elementary gifted students' argumentation and examine the special features of argumentation founded in scientific inquiry. 28 students were selected in the special education center for the gifted in K National University. They were organized 8 groups of 3~4 students and engaged in scientific inquiry activity. The researcher wasn't involved in students' inquiry activity and argumentation except for the guiding and introducing their activity. In the first session, each group carried out the experiment 'Putting a heated can in the water' and then, the students discussed to probe their experimental results and build their explanation. In the second session, each group presented their experiment results and evidence from their experiment justifying their claims, and had questions from other groups. The protocol data during 8 groups' argumentations were analyzed using 'Rubric for Scientific Argumentation Assessment' (Yang et al., 2009) in three domains- the form, content and attitude. As a result, in form domain, almost groups were rated 2 points due to their argument without rebuttal on the subcategory of 'composition', but they got a good grade above 3 points in subcategory such as 'claim', 'ground', and 'conclusion'. In content domain, almost groups got points above 3 points. In attitude domain, there were some striking contrast between each groups. Six groups got good score more than 4 points on the subcategory of openness, but two groups, they alleged and got score below 3 point. While the 6 groups of all got 4 points in the aspect of participation, 3 groups got 3 points lower than because they only just asserted and not interact with other groups. Throughout the argumentation, two features were found that; as time goes by, arguments were refined; Students tended to use their prior to knowledge rather than evidence such as experimental data in making claims and conclusions.

  • PDF

Analysis of Epistemic Considerations and Scientific Argumentation Level in Argumentation to Conceptualize the Concept of Natural Selection of Science-Gifted Elementary Students (초등 과학 영재 학생들의 자연선택 개념 이해를 위한 논변 활동에서 나타난 인식적 이해와 논변활동 수준 분석)

  • Park, Chuljin;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.4
    • /
    • pp.565-575
    • /
    • 2017
  • This study analyzes the epistemic considerations and the argumentation level revealed in the discourse of the key concept of natural selection for science-gifted elementary students. The paper analyzes and discusses the results of a three-student focus group, drawn from a cohort of twenty gifted sixth-grade elementary students. Nature, generality, justification, and audience were used to analyze epistemic consideration. Learning progression in scientific argumentation including argument construction and critique was used to analyze students' scientific argumentation level. The findings are as follows: First, Epistemic considerations in discourse varied between key concepts of natural selection discussed. The nature aspect of epistemic considerations is highly expressed in the discourse for all natural selection key concepts. But the level of generality, justification and audience was high or low, and the level was not revealed in the discourse. In the heredity of variation, which is highly expressed in terms of generality of knowledge, the linkage with various phenomena against the acquired character generated a variety of ideas. These ideas were used to facilitate engagement in argumentation, so that all three students showed the level of argumentation of suggestions of counter-critique. Second, students tried to explain the process of speciation by using concepts that were high in practical epistemic considerations level when explaining the concept of speciation, which is the final natural selection key concept. Conversely, the concept of low level of epistemic considerations was not included as an explanation factor. The results of this study suggest that students need to analyze specific factors to understand why epistemological decisions are made by students and how epistemological resources are used according to context through various epistemological resources. Analysis of various factors influencing epistemological decisions can be a mediator of the instructor who can improve the quality and level of the argumentation.

Analysis of Argumentation Levels in Preservice Earth Science Teachers, Lesson Plans (예비 지구과학 교사의 교수학습지도안에 나타난 논증 수준 분석)

  • Park, Won-Mi;Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.123-135
    • /
    • 2021
  • In this study, we apply a lesson design process using an argumentation structure to preservice earth science teachers and analyzed argumentation levels displayed in the lesson plans written by preservice teachers in the process. As a result of the study, the preservice teachers designed a logically structured lesson by reflecting more argumentation components in the final lesson plan than the first one. In addition, in the case of lesson topics in which all argumentation elements were not explicitly presented in textbooks or curriculum, preservice teachers could not clearly reflect some argumentation components in the lesson plan. The conclusions and implications based on the results are as follows: First, it is necessary to use the argumentation structure as a tool to design logical science lessons, considering that argumentation levels of lesson plans written by preservice science teachers were improved by using argumentation structures in instructional design. Next, it is necessary to cultivate the preservice science teacher's ability to reconstruct the curriculum for science lesson design using the argumentation structure since argumentation levels of lesson plans written by preservice science teachers were limited to the argumentation components presented in the textbook and curriculum. Additionally, it is necessary to develop and apply a preservice teacher education program that uses the argumentation structure in the context of actual teaching activities so that preservice science teachers can not only understand argumentation but also improve their class expertise.

Exploring Small Group Argumentation and Epistemological Framing of Gifted Science Students as Revealed by the Analysis of Their Responses to Anomalous Data (변칙 사례에 대한 과학 영재 학생들의 반응에서 드러난 인식론적 프레이밍과 소집단 논변활동 탐색)

  • Lee, Eun Ju;Yun, Sun Mi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.419-429
    • /
    • 2015
  • In this study, we explored students' epistemological framing during scientific argumentation and how interactions among group members influenced group argumentation. Twenty-one gifted science students divided into groups of three or four participated in this study. Students' discussions related to data interpretation concerning the rate of photosynthesis were analyzed. Students' activities were videotaped in groups so the discourse could be transcribed and students' behavioral cues analyzed. Students' epistemological framing has been identified through analysis of their speech and behavioral responses to the anomalous data from the inquiry process. Subsequently, their sources of warrant and group argumentation levels were explored. We found out that group members framed the inquiry in two ways: "understanding phenomena" and "classroom game." Group members whose framing was "understanding phenomena" required other members to justify the anomalous data by examining its validity and reliability, which conclusively demonstrated a high level of argumentation. On the other hand, when group members used "classroom game" to frame their argumentation, they did not recognize the necessity of explaining the anomalous data; rather, these students used simple empirical justification to explain the data, reflecting a low level of argumentation. When students using different epistemological framing disagreed over interpretations of anomalous data throughout the discussion, clashes ensued that resulted in emotional conflict and a lack of discussion. Students' framing shifts were observed during the discussion on which group leaders seemed to have a huge influence. This study lays the foundation for future work on establishing productive framing to prompt scientific argumentation in science classrooms.

Elementary School Students' Decision-Making Change through Refutation Materials and Empathic Situation on Socio-Scientific Issue (과학 관련 사회적 문제(SSI) 상황에서 반박자료와 감정이입상황에 따른 초등학생의 의사결정 변화)

  • Yang, Il-Ho;Kim, Ki-Young;Lim, Sung-Man;Kim, Eun-Ae;Kim, Seong-Un
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.1
    • /
    • pp.66-75
    • /
    • 2015
  • This study is to investigate an argumentation level for elementary school students after analysing an argumentation structure about a socio scientific issue(SSI), and inquire a change of the decision-making according to the refutation materials and empathic situation. This data was collected from the semi-structured interview with the 14 students, grade 6th. For this, the first stage is to present the reading materials about the SSI to the students, let them decision-making and make them argue pro and con about the SSI during the interview. After that, facing with the refutation materials against the existing contention and the empathic situation, the change of the decision-making of the students was conducted. After the research, the level of the argumentation of the students was low, and the students who didn't have the background knowledge about the theme made the decisions according to the values, emotions or intuitions of their own. And the decision-making of the students changed more when presented with the refutation materials and the empathic situation, they were difficult to make the decision because of new information and various stances. Besides, they lacked in the ability that recognize the situation related with their own life, just used the fragmentary knowledge associated with value of life respect. Through these result, it is necessary to produce the refutation materials and empathic materials about the SSI to the students for improving the level of argumentation.

Exploring Scientific Argumentation from Teacher-Student Interaction with Epistemological and Psychological Perspectives (교사-학생 상호작용간의 과학논증 탐색: 인식론 및 심리학적 관점으로)

  • Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.106-117
    • /
    • 2010
  • The purpose of this study was to explore students' argumentation in perspectives of epistemology and psychology and to find out how teacher can promote students' abilities of developing argumentation. The 60 hours of lessons from the interaction between one science teacher (Mr. Physics, who had 35 years of teaching experience) and his 26 students were observed, transcribed, and analyzed using two different analyzing tools; one is from the perspective of epistemology and the other from the perspective of psychology, which can portray how argumentation is constructed. Mr. Physics created the environment where students could promote the quality of scientific argumentation through explicit teaching strategy, Claim-Evidence Approach. The low level of argumentation was portrayed through examples from students' prior knowledge or experience in the form of an Appeal to the instance operation and the Elaboration reasoning skill. Students' own claims were developed through application of knowledge in a different context in the form of an Induction operation and Generativity reasoning skill. Higher level of argumentation was portrayed through Consistency operation with other knowledge or experience and Explanation reasoning skills based on students' ideas with more active teacher's inputs. The teacher in this study played a role as a helper for students to enact identities as competent "sense makers," as an elaborator rather than evaluator to extend students' ideas, and as a mentor to foster and monitor the students' development of ideas of a higher quality. It is critical for teachers to understand the nature of argumentation, which in turn is connected to their explicit teaching strategy with the aim of providing opportunities where students can understand the science enterprise.

Theoretical Perspectives for Analyzing Explanation, Justification and Argumentation in Mathematics Classrooms.

  • Yackel, Erna
    • Research in Mathematical Education
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2004
  • Current interest in mathematics learning that focuses on understanding, mathematical reasoning and meaning making underscores the need to develop ways of analyzing classrooms that foster these types of learning. In this paper, the author show that the constructs of social and socio-mathematical norms, which grew out of taking a symbolic interactionist perspective, and Toulmins scheme for argumentation, as elaborated for mathematics education by Krummheuer [The ethnology of argumentation. In: The emergence of mathematical meaning: Interaction in classroom cultures (1995, pp. 229-269). Hillsdale, NJ: Erlbaum], provide us with means to analyze aspects of explanation, justification and argumentation in mathematics classrooms, including means through which they can be fostered. Examples from a variety of classrooms are used to clarify how these notions can inform instruction at all levels, from the elementary grades through university-level mathematics.

  • PDF

Teacher Feedback on Process-Centered Assessment for Scientific Argumentation (과학적 논의를 활용한 과정중심평가에서의 교사 피드백 유형 사례 연구)

  • Kim, Misook;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.271-289
    • /
    • 2020
  • This study investigates the types of teacher feedback in the process-centered assessment for scientific argumentation. The process-centered assessment visualizes the process of developing scientific argumentation at a group level. Four teachers and 353 high school students participated in this study. We analyzed video recordings, the collaborative modeling-argumentation papers, and teachers' interviews. The findings indicate that the teachers provided feedback on scientific concepts and the development of small group argumentation. We presented a representative case for each category in detail. The study suggests that teachers' efficient use of feedback leads to improvement in students' self-regulation. This study contributes to providing specific and useful guidelines on the use of process-centered assessment for enhancing students' scientific argumentation.