• Title/Summary/Keyword: area-time complexity

Search Result 238, Processing Time 0.029 seconds

Digit-Parallel/Bit-Serial Multiplier for GF$(2^m)$ Using Polynomial Basis (다항식기저를 이용한 GF$(2^m)$ 상의 디지트병렬/비트직렬 곱셈기)

  • Cho, Yong-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.892-897
    • /
    • 2008
  • In this paper, a new architecture for digit-parallel/bit-serial GF$(2^m)$ multiplier with low latency is proposed. The proposed multiplier operates in polynomial basis of GF$(2^m)$ and produces multiplication results at a rate of one per D clock cycles, where D is the selected digit size. The digit-parallel/bit-serial multiplier is faster than bit-serial ones but with lower area complexity than bit-parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.

Practical Intelligent Cleaning Robot Algorithm Based on Grouping in Complex Layout Space (복잡한 공간에서 그룹화 기반의 실용적 지능형 청소 로봇 알고리즘)

  • Jo Jae-Wook;Noh Sam-H.;Jeon Heung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.489-496
    • /
    • 2006
  • The random-based cleaning algorithm is a simple algorithm widely used in commercial vacuum cleaning robots. This algorithm has two limitations, that is, cleaning takes a long time and there is no guarantee that the cleaning will cover the whole cleaning area. This has lead to customer dissatisfaction. Thus, in recent years, many intelligent cleaning algorithms that takes into consideration information gathered from the cleaning area environment have been proposed. The plowing-based algorithm, which is the most efficient algorithm known to date when there are no obstacles in the cleaning area, has a deficiency that when obstacle prevail, its performance is not guaranteed. In this paper, we propose the Group-k algorithm that is efficient for that situation, that is, when obstacle prevail. The goal is not to complete the cleaning as soon as possible, but to clean the majority of the cleaning area as fast as possible. The motivation behind this is that areas close to obstacles are usually difficult for robots to handle, and hence, many require human assistance anyway In our approach, obstacles are grouped by the complexity of the obstacles, which we refer to as 'complex rank', and then decide the cleaning route based on this complex rank. Results from our simulation-based experiments show that although the cleaning completion time takes longer than the plowing-based algorithm, the Group-k algorithm cleans the majority of the cleaning area faster than the plowing algorithm.

Proposal Of Optimum Equalizer Hardware Architecture for Cable Modem and Analysis of Various LMS Algorithms (케이블모뎀용 등화기에 적용되는 다양한 LMS알고리즘에 관한 성능평가 및 최적의 등화기 하드웨어구조 제안)

  • Cho, Yeon-Gon;Yu, Hyeong-Seok;Kim, Byung-Wook;Cho, Jun-Dong;Kim, Jea-Woo;Lee, Jae-Kon;Park, Hyun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2C
    • /
    • pp.150-159
    • /
    • 2002
  • This paper presents the convergence time, SER(Symbol Error Rate), MSE(Mean Square Error), hardware complexity and step-size(${\mu}$) about various LMS(Least Mean Square) algorithms in FS-DFE(Fractionally Spaced-Decision Feedback Equalize) for Cable Modem based on MCNS(Multimedia Cable Network System) DOCSIS(Data Over Cable Service Interface Specification) v1.0/v1.1 standards. We designed and simulated using ${SPW}^{TM}$ and synthesized using STD90 library through ${SYNOPSYS}^{TM}$. And also, we adopted the time-multiplexed multiplication and tap shared architecture in order to achieve the low hardware complexity. Simulation results show that DS-LMS algorithms[1][3] is the optimum solution about performace and hardware size. in high order QAM applications. Finally, we achieved area saving about 58% using DS-LMS algorithm compare with conventional equalizer architecture.

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.

HEVC Encoder Optimization using Depth Information (깊이정보를 이용한 HEVC의 인코더 고속화 방법)

  • Lee, Yoon Jin;Bae, Dong In;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.640-655
    • /
    • 2014
  • Many of today's video systems have additional depth camera to provide extra features such as 3D support. Thanks to these changes made in multimedia system, it is now much easier to obtain depth information of the video. Depth information can be used in various areas such as object classification, background area recognition, and so on. With depth information, we can achieve even higher coding efficiency compared to only using conventional method. Thus, in this paper, we propose the 2D video coding algorithm which uses depth information on top of the next generation 2D video codec HEVC. Background area can be recognized with depth information and by performing HEVC with it, coding complexity can be reduced. If current CU is background area, we propose the following three methods, 1) Earlier stop split structure of CU with PU SKIP mode, 2) Limiting split structure of CU with CU information in temporal position, 3) Limiting the range of motion searching. We implement our proposal using HEVC HM 12.0 reference software. With these methods results shows that encoding complexity is reduced more than 40% with only 0.5% BD-Bitrate loss. Especially, in case of video acquired through the Kinect developed by Microsoft Corp., encoding complexity is reduced by max 53% without a loss of quality. So, it is expected that these techniques can apply real-time online communication, mobile or handheld video service and so on.

Efficiently Hybrid $MSK_k$ Method for Multiplication in $GF(2^n)$ ($GF(2^n)$ 곱셈을 위한 효율적인 $MSK_k$ 혼합 방법)

  • Ji, Sung-Yeon;Chang, Nam-Su;Kim, Chang-Han;Lim, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.1-9
    • /
    • 2007
  • For an efficient implementation of cryptosystems based on arithmetic in a finite field $GF(2^n)$, their hardware implementation is an important research topic. To construct a multiplier with low area complexity, the divide-and-conquer technique such as the original Karatsuba-Ofman method and multi-segment Karatsuba methods is a useful method. Leone proposed an efficient parallel multiplier with low area complexity, and Ernst at al. proposed a multiplier of a multi-segment Karatsuba method. In [1], the authors proposed new $MSK_5$ and $MSK_7$ methods with low area complexity to improve Ernst's method. In [3], the authors proposed a method which combines $MSK_2$ and $MSK_3$. In this paper we propose an efficient multiplication method by combining $MSK_2,\;MSK_3\;and\;MSK_5$ together. The proposed method reduces $116{\cdot}3^l$ gates and $2T_X$ time delay compared with Gather's method at the degree $25{\cdot}2^l-2^l with l>0.

Bridging Solutions for a Heterogeneous WiMAX-WiFi Scenario

  • Fantacci, Romano;Tarchi, Daniele
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.369-377
    • /
    • 2006
  • Recently, the metropolitan area network (MAN) has attracted much attention in telecommunication research and has emerged as one of the most important research topics in the community. Several standards representing the first step for developing metropolitan networks have been published; IEEE 802.16 (WiMAX) has taken a relevant role in reaching the goal of realizing a full-service network all over a urban and suburban area. At the same time, the wireless local area networks (WLAN) have been widely used for in-home or short range communications, mainly basing on the IEEE 802.11 (WiFi) standard. A consequence is the increasing interest in interworking technology, that allows an interconnection between different standards by maintaining certain properties, mainly in terms of quality of service (QoS). One of the major issues is to design bridging devices capable of transparently interconnect different wireless technologies. In this paper, we propose two interconnection bridging solutions between WiMAX and WiFi links; the first is more based on the concept of maintaining a certain end-to-end QoS level independently from the wireless technologies used. The second method is more devoted to the reduction of the implementation complexity at the cost of no QoS assurance. The performance of the two methods are compared by resorting to computer simulations showing the advantages of each one technique.

Camera Source Identification of Digital Images Based on Sample Selection

  • Wang, Zhihui;Wang, Hong;Li, Haojie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3268-3283
    • /
    • 2018
  • With the advent of the Information Age, the source identification of digital images, as a part of digital image forensics, has attracted increasing attention. Therefore, an effective technique to identify the source of digital images is urgently needed at this stage. In this paper, first, we study and implement some previous work on image source identification based on sensor pattern noise, such as the Lukas method, principal component analysis method and the random subspace method. Second, to extract a purer sensor pattern noise, we propose a sample selection method to improve the random subspace method. By analyzing the image texture feature, we select a patch with less complexity to extract more reliable sensor pattern noise, which improves the accuracy of identification. Finally, experiment results reveal that the proposed sample selection method can extract a purer sensor pattern noise, which further improves the accuracy of image source identification. At the same time, this approach is less complicated than the deep learning models and is close to the most advanced performance.

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Improvement of the Fractional Precipitation Process for the Purification of (+)-Dihydromyricetin ((+)-Dihydromyricetin 정제를 위한 분별침전공정 개선)

  • Lim, Min-Kyoung;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • Fractional precipitation is a simple method for purifying (+)-dihydromyricetin extracted from biomass. However, the fractional precipitation process has been inherently problematic due to the lengthy precipitation time that is required. The fractional precipitation time was shortened and (+)-dihydromyricetin yield was improved by increasing the surface area per working volume (S/V) of the reacting solution through the addition of a cation exchange resin (Amberlite 200, Amberlite IR 120Na, Amberlite IR 120H, or Amberlite IRC 50). Most of the (+)-dihydromyricetin (>90%) could be obtained after about 16 h of fractional precipitation using Amberlite 200. Since high-purity (+)-dihydromyricetin can be obtained at a high yield and the precipitation time can be reduced by increasing the surface area available for precipitation, this improved method is expected to minimize solvent usage and the size and complexity of the high performance liquid chromatography operation required for (+)-dihydromyricetin purification.