References
- K. S. Choi, E. Y. Lam, and K. K. Wong, "Automatic source camera identification using the intrinsic lens radial distortion, " Optics Express, vol. 14, no. 24, pp.11551-11565,2006. https://doi.org/10.1364/OE.14.011551
- John S. Ho, Oscar C. Au, Jiantao Zhou, and Yuanfang Guo. "Inter-channel demosaicking traces for digital image forensics," in Proc. of IEEE International Conference on Multimedia and Expo(ICME), pp.1475-1480, July 19-23, 2010.
- Q. Liu, X. Li, and L. Chen, "Identification of smartphone-image source and manipulation," in Proc.of International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems: Advanced Research in Applied Artificial Intelligence(IEA/AIE), pp.262-271, June 9-12, 2012.
- J. Lukas, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern noise, " IEEE Transactions on Information Forensics & Security, vol. 1, no.2, pp. 205-214, June, 2006. https://doi.org/10.1109/TIFS.2006.873602
- R. Li, , C. T. Li, and Y. Guan, "A compact representation of sensor fingerprint for camera identification and fingerprint matching," in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp. 1777-1781, April 19-24, 2015.
- R. Li, C. Kotropoulos, C. T. Li, and Y. Guan, "Random subspace method for source camera identification," in Proc. of IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-5, September 17-20, 2015.
- Z. Li, J. Liu, Y. Yang, and et al, "Clustering-guided sparse structural learning for unsupervised feature selection," IEEE Transactions on Knowledge & Data Engineering, vol.26, no.9, pp. 2138-2150, September, 2014. https://doi.org/10.1109/TKDE.2013.65
- Z. Li and J. Tang, "Unsupervised feature selection via nonnegative spectral analysis and redundancy control," IEEE Transactions on Image Processing, vol.24, no.12, pp. 5343-5355, December, 2015. https://doi.org/10.1109/TIP.2015.2479560
- Z. Li, J. Liu, J. Tang, and H. Lu, "Robust structured subspace learning for data representation," IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.37, no.10, pp. 2085-2098, October, 2015. https://doi.org/10.1109/TPAMI.2015.2400461
- L. Zheng, R. Lukac, X. Wu and D. Zhang, "PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras," IEEE Transactions on Image Processing, vol.18. no.4, pp.797-812, April, 2009. https://doi.org/10.1109/TIP.2008.2011384
- V.U. Sameer, R. Naskar, N. Musthyala, and K. Kokkalla, "Deep learning based counter-forensic image classification for camera model identification, " Digital Forensics and Watermarking, pp.52-64, August 23-25, 2017.
- D. Freire-Obregon, F. Narducci, S. Barra, and M. Castrillon-Santana, "Deep learning for source camera identification on mobile devices, " arXiv:1710.01257.
- P. Yang, W. Zhao, R. Ni, and Y. Zhao, "Source camera identification based on content-adaptive fusion network, " arXiv:1703.04856.
- R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Transactions on Systems Man & Cybernetics, vol.3, no.6, pp.610-621, November, 1973. https://doi.org/10.1109/TSMC.1973.4309314
- T.Gloe and R. Bohme, "The 'Dresden Image Database' for benchmarking digital image forensics, " in Proc. of ACM Symposium on Applied Computing (SAC), pp.1584-1590, March 22-26, 2010.