• Title/Summary/Keyword: architectural model

Search Result 1,888, Processing Time 0.025 seconds

System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation

  • Fujita, Kohei;Ikeda, Ayumi;Shirono, Minami;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.843-857
    • /
    • 2015
  • System identification is regarded as the most basic technique for structural health monitoring to evaluate structural integrity. Although many system identification techniques extracting mode information (e.g., mode frequency and mode shape) have been proposed so far, it is also desired to identify physical parameters (e.g., stiffness and damping). As for high-rise buildings subjected to long-period ground motions, system identification for evaluating only the shear stiffness based on a shear model does not seem to be an appropriate solution to the system identification problem due to the influence of overall bending response. In this paper, a system identification algorithm using a shear-bending model developed in the previous paper is revised to identify both shear and bending stiffnesses. In this algorithm, an ARX (Auto-Regressive eXogenous) model corresponding to the transfer function for interstory accelerations is applied for identifying physical parameters. For the experimental verification of the proposed system identification framework, vibration tests for a 3-story steel mini-structure are conducted. The test structure is specifically designed to measure horizontal accelerations including both shear and bending responses. In order to obtain reliable results, system identification theories for two different inputs are investigated; (a) base input motion by a modal shaker, (b) unknown forced input on the top floor.

Seismic Response of MDOF Structure with Shallow Foundation Using Winkler Model (Winkler Model을 적용한 얕은 기초 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Min, Ji Hee;Park, Jin Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.165-170
    • /
    • 2024
  • This study investigated the impact of soil-structure interaction on multi-degree-of-freedom structures using the shallow-foundation Winkler model, known as the BNWF model. The model's period was determined through eigenvalue analysis and compared to results obtained from FEMA's formula. Results indicated that considering the soil, the structure's period increased by up to 8.7% compared to the fixed-base model, aligning with FEMA's calculations. Furthermore, with adequate ground acceleration, roof displacement increased by 3.4% to 3.8%, while base shear decreased by 4% to 10%. However, roof displacement and base shear increased in some earthquake scenarios due to spectral shape effects in regions with extended structural periods. Foundation damping effects, determined through the foundation's moment-rotation history, grew with higher ground acceleration. This suggests that accounting for period elongation and foundation damping can enhance the seismic design of multi-degree-of-freedom structures.

A Feature-Oriented Approach to Variability Management and Consistency Analysis of Multi-Viewpoint Product Line Architectures (다중 관점 제품계열아키텍처의 가변성 관리 및 일관성 검사를 위한 특성 지향 접근방법)

  • Lee, Kwan-Woo
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.803-814
    • /
    • 2008
  • Product line architectures include variable parts to be selected according to product specific requirements. In order to derive architectures that are valid for a particular product from product line architectures, variabilities of product line architectures must be systematically managed. In this paper, we adopt an approach to variability management of product line architectures through an explicit mapping between a feature model and product line architecture models. If this mapping is incorrect or there exists inconsistency among product line architectural elements, variabilities of product line architectures cannot be managed correctly. Therefore, this paper formally defines product line architectural models in terms of conceptual, process, deployment, and module views, and mapping relationships between the feature model and the architectural models. Consistency rules for correct variability management of product line architectures are defined in terms of consistency in each of product line architecture model, consistency between different architectural view models, and consistency between a feature model and product line architectural models. These consistency rules provide a theoretical foundation for deriving valid product architecture from product line architectures.

Resource and Sequence Optimization Using Constraint Programming in Construction Projects

  • Kim, Junyoung;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk;Joo, Seonu;Yoon, Inseok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.608-615
    • /
    • 2022
  • Construction projects are large-scale projects that require extensive construction costs and resources. Especially, scheduling is considered as one of the essential issues for project success. However, the schedule and resource management are challenging to conduct in high-tech construction projects including complex design of MEP and architectural finishing which has to be constructed within a limited workspace and duration. In order to deal with such a problem, this study suggests resource and sequence optimization using constraint programming in construction projects. The optimization model consists of two modules. The first module is the data structure of the schedule model, which consists of parameters for optimization such as labor, task, workspace, and the work interference rate. The second module is the optimization module, which is for optimizing resources and sequences based on Constraint Programming (CP) methodology. For model validation, actual data of plumbing works were collected from a construction project using a five-minute rate (FMR) method. By comparing actual data and optimized results, this study shows the possibility of reducing the duration of plumbing works in construction projects. This study shows decreased overall project duration by eliminating work interference by optimizing resources and sequences within limited workspaces.

  • PDF

A Strategy on Performance Assessment Information System of Building Remodeling

  • Hong, Eun Hwa;Kim, Gyu Jin;Lee, Sang Chul;Lee, Jong Sik;Jo, Jae Ho;Chun, Jae Youl
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.643-645
    • /
    • 2015
  • This study is designating the scope, in order to establish the information management system of performance assessment for remodeling buildings, to analyze the current status of performance assessment, and to identify technologies and concepts applicable to performance assessment model.

  • PDF

Architectural model driven dependability analysis of computer based safety system in nuclear power plant

  • Wakankar, Amol;Kabra, Ashutosh;Bhattacharjee, A.K.;Karmakar, Gopinath
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.463-478
    • /
    • 2019
  • The most important non-functional requirements for dependability of any Embedded Real-Time Safety Systems are safety, availability and reliability requirements. System architecture plays the primary role in achieving these requirements. Compliance with these non-functional requirements should be ensured early in the development cycle with appropriate considerations during architectural design. In this paper, we present an application of system architecture modeling for quantitative assessment of system dependability. We use probabilistic model checker (PRISM), for dependability analysis of the DTMC model derived from system architecture model. In general, the model checking techniques do not scale well for analyzing large systems, because of prohibitively large state space. It limits the use of model checking techniques in analyzing the systems of practical interest. We propose abstraction based compositional analysis methodology to circumvent this limitation. The effectiveness of the proposed methodology has been demonstrated using the case study involving the dependability analysis of safety system of a large Pressurized Water Reactor (PWR).

Static finite element analysis of architectural glass curtain walls under in-plane loads and corresponding full-scale test

  • Memari, A.M.;Shirazi, A.;Kremer, P.A.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.365-382
    • /
    • 2007
  • A pilot study has been conducted to guide the development of a finite element modeling formulation for the analysis of architectural glass curtain walls under in-plane lateral load simulating earthquake effects. This pilot study is one aspect of ongoing efforts to develop a general prediction model for glass cracking and glass fallout for architectural glass storefront and curtain wall systems during seismic loading. For this study, the ANSYS finite element analysis program was used to develop a model and obtain the stress distribution within an architectural glass panel after presumed seismic movements cause glass-to-frame contact. The analysis was limited to static loading of a dry-glazed glass curtain wall panel. A mock-up of the glass curtain wall considered in the analysis with strain gages mounted at select locations on the glass and the aluminum framing was subjected to static loading. A comparison is made between the finite element analysis predicted strain and the experimentally measured strain at each strain gage location.

Deformation-based Strut-and-Tie Model for flexural members subject to transverse loading

  • Hong, Sung-Gul;Lee, Soo-Gon;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1213-1234
    • /
    • 2016
  • This paper describes a deformation-based strut-and-tie model for the flexural members at post-yield state. Boundary deformation conditions by flexural post-yield response are chosen in terms of the flexural bar strains as the main factor influenced on the shear strength. The main purpose of the proposed model is to predict the shear capacities of the flexural members associated with the given flexural deformation conditions. To verify the proposed strut-and-tie model, the estimated shear strengths depending on the flexural deformation are compared with the experimental results. The experimental data are in good agreement with the values obtained by the proposed model.

Computationally Efficient and Accurate Simulation of Cyclic Behavior for Rectangular HSS Braces

  • Lee, Chang Seok;Sung, Min Soo;Han, Sang Whan;Jee, Hyun Woo
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1125-1138
    • /
    • 2018
  • During earthquakes, braces behave in complex manners because of the asymmetric response nature of their responses in tension and compression. Hollow structural sections (HSS) have been popularly used for braces due to their sectional efficiency in compression. The purpose of this study is to accurately simulate the cyclic behavior of rectangular HSS braces using a computationally efficient numerical model. A conceptually efficient and simple physical theory model is used as a basis model. To improve the accuracy of the model, cyclic beam growth and buckling load, as well as the incidences of local buckling and brace fracture are estimated using empirical equations obtained from regression analyses using test data on rectangular HSS braces. The accuracy of the proposed model is verified by comparing actual and simulated cyclic curves of brace specimens with various slenderness and width-to-thickness ratios.

Expansion of Measured Static and Dynamic Data as Basic Information for Damage Detection

  • Eun, Hee-Chang;Lee, Min-Su;Chung, Chang-Yong;Kwak, No-Hyun
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.21-26
    • /
    • 2008
  • The number of measured degrees of freedom for detecting the damage of any structures is usually less than the number of model degrees of freedom. It is necessary to expand the measured data to full set of model degrees of freedom for updating modal data. This study presents the expansion methods to estimate all static displacements and dynamic modal data of finite element model from the measured data. The static and dynamic methods are derived by minimizing the variation of the potential energy and the Gauss's function, respectively. The applications illustrate the validity of the proposed methods. It is observed that the numerical results obtained by the static approach correspond with the Guyan condensation method and the derived static and dynamic approaches provide the fundamental idea for damage detection.