Acknowledgement
Supported by : National Research Foundation of Korea
References
- AISC. (2001). Load and resistance factor design specification for structural steel buildings (3rd ed.). Chicago: American Institute of Steel Construction.
- AISC. (2016). Seismic provisions for structural steel buildings. Chicago:American Institute of Steel Construction, Chicago, ANSI/AISC 341-16.
- Alipour, M., & Aghakouchak, A. (2013). Numerical analysis of the nonlinear performance of concentrically braced frames under cyclic loading. International Journal of Steel Structures, 13(3), 401-419. https://doi.org/10.1007/s13296-013-3002-5
- ASCE 7. (2010). Minimum design loads for buildings and other structures. Reston: ASCE 7-10, American Society of Civil Engineers.
- Azad, S. K., Topkaya, C., & Bybordiani, M. (2018). Dynamic buckling of braces in concentrically braced frames. Earthquake Engineering and Structural Dynamics, 47, 613-633. https://doi.org/10.1002/eqe.2982
- Black, R. G., Wenger, W. A., & Popov, E. P. (1980). Inelastic buckling of steel strut under cyclic load reversals. Report No. UCB/EERC-80/40, Earthquake Engineering Research Center, University of California, Berkeley.
- Bruneau, M., Uang, C. M., & Whittaker, A. (2011). Ductile design of steel structures. New York: McGraw-Hill Book Co., Inc.
- Dicleli, M., & Calik, E. E. (2008). Physical theory hysteretic model for steel braces. Journal of Structural Engineering, ASCE, 134(7), 1215-1228. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1215)
- Ding, Z., Fouthch, D. A., & Han, S. W. (2008). Fracture modeling of rectangular hollow section steel braces. Engineering Journal, 45(3), 171-185.
- Fell, B. V., Kanvinde, A. M., Deierlein, G. G., & Myers, A. T. (2009). Experimental investigation of inelastic cyclic buckling and fracture of steel braces. Journal of Structural Engineering, 135, 19-32. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:1(19)
- Gogginsa, J. M., Brodericka, B. M., Elghazoulib, A. Y., & Lucasa, A. S. (2005). Experimental cyclic response of cold-formed hollow steel bracing members. Engineering Structures, 27(7), 977-989. https://doi.org/10.1016/j.engstruct.2004.11.017
- Han, S. W., Kim, W. T., & Foutch, D. A. (2007a). Seismic behavior of HSS bracing members according to width-thickness ratio under symmetric cyclic loading. Journal of Structural Engineering, 133, 264-273. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(264)
- Han, S. W., Kim, W. T., & Foutch, D. A. (2007b). Tensile strength equation for HSS bracing members having slotted end connections. Earthquake Engineering and Structural Dynamics, 36, 995-1008. https://doi.org/10.1002/eqe.665
- Ikeda, K., & Mahin, S. A. (1984). A refined physical theory model for predicting the seismic behavior of braced steel frames. Report No. UCB/EERC-84/12. Berkeley.
- Jain, A. K., & Goel, S. C. (1978). Hysteresis models for steel members subjected to cyclic buckling or cyclic end moments and buckling -User's guide for DRAIN - 2D: EL9 and EL10. Report No. UMEE 78R6. University of Michigan, Ann Arbor.
- Jin, J., & El-Tawil, S. (2003). Inelastic cyclic model for steel braces. Journal of Engineering Mechanics, ASCE, 129(5), 548-557. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(548)
- Kayvani, K., & Barzegar, F. (1996). Hysteretic modeling of tubular members and off shore platforms. Engineering Structures, 18(2), 93-101. https://doi.org/10.1016/0141-0296(95)00062-3
- Lee, K. (2003). Seismic vulnerability evaluation of axially loaded steel build - up laced members. Ph.D. thesis. Department of Civil, Structural, and Environmental Engineering, State University of New York, Buffalo.
- Lee, S. S., & Goel, S. C. (1987). Seismic behavior of hollow and concrete - filled square tubular bracing members. Report No. UMCE 87-11. Department of Civil Eng., University of Michigan, Ann Arbor.
- Lee, Y. J., Oh, J., Abdu, H. H., & Ju, Y. K. (2016). Finite element analysis of optimized brace angle for the diagrid structural system. International Journal of Steel Structures, 16(4), 1355-1363. https://doi.org/10.1007/s13296-016-0086-8
- Maison, B. F., & Popov, E. P. (1980). Cyclic response prediction for braced steel frames. Journal of Structural Engineering, ASCE, 106(7), 1401-1416.
- Mazzolani, F. M., & Gioncu, V. (2000). Seismic resistant steel structures (Vol. 420). New York: CISM International Centre for Mechanical Science. Courses and lectures, Springer.
- Nip, K. H., Gardner, L., & Elghazouli, A. Y. (2010). Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members. Engineering Structures, 32(2), 424-441. https://doi.org/10.1016/j.engstruct.2009.10.005
- Seo, A., Moon, K. H., & Han, S. W. (2010). Fracture prediction due to local buckling in bracing members. Journal of Architectural Institute of Korea (AIK), 26(12), 91-98.
- Shaback, J. B. (2001). Behavior of square HSS braces with end connections under reversed cyclic axial loading. Master thesis, University of Calgary, Calgary.
- Shaback, J. B., & Brown, T. (2003). Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading. Canadian Journal of Civil Engineering, 30(4), 745-753. https://doi.org/10.1139/l03-028
- Soroushian, P., & Alawa, M. S. (1990). Hysteretic modeling of steel struts: Refined physical theory approach. Journal of Structural Engineering, 116(11), 2903-2916. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(2903)
- Tremblay, R., Archambault, M. H., & Filiatrault, A. (2003). Seismic response of concentrically braced steel frames made with rectangular hollow bracing members. Journal of Structural Engineering, 129, 1626-1636. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1626)
- Uriz, P. (2005). Towards earthquake resistant design of concentrically braced steel structures. Ph.D. thesis, University of California, Berkeley.
Cited by
- Development of a hysteretic model for steel members under cyclic axial loading vol.46, pp.None, 2022, https://doi.org/10.1016/j.jobe.2021.103798