• Title/Summary/Keyword: architectural computing

Search Result 99, Processing Time 0.024 seconds

Vibration Control Performance Evaluation of Hybrid Mid-Story Isolation System for a Tall Building (하이브리드 중간층 지진격리시스템의 고층 건물 진동 제어 성능 평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.37-44
    • /
    • 2018
  • A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is "Shiodome Sumitomo Building" a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.

A Study on Electric Capacity and CO2 by the Roof Top PV System of the Industrial Building in Korea (한국 산업용 건물지붕 적용 PV에 의한 발전량 및 CO2 분석연구)

  • Kim, Ji-Su;Lee, Eung-Jik;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.131-136
    • /
    • 2010
  • The purpose of this study is to provide foundational data for expansion of solar generation in building application, a clean energy, by introducing applicability of solar power generation system on roofs of industrial buildings and computing expected amounts of power and carbon dioxides reduction. As methodologies of this study, after reviewing 120,000 domestic factories to verify the BIPV feasibility for industrial building sthrough theoretical considerations of solar generation system, we calculated BIPV application methods and subsequent expected power generation quantity and carbon dioxide reductions through roof type analysis. we analyzed four cases of expected power generation amounts of solar batteries according to application methods, and when considering that the main type of roofs are slant roofs according to the investigation result about roof forms of domestic industrial complexes, we believe that the module angle of a slant roof around $17^{\circ}$(case3) is most suitable for the application. Finally, we came up with 517,944[TOE] as the corresponding petroleum tonnage based on this computed expected power generation amount and the amount of 1,214,836[$tCO_2$] carbon dioxide reductions by calculating them by energy sources.

A Study on the Effects of a Virtual-Users Model Computing the Semantics of Spaces for the Operation and Understanding of Human Behavior Simulation of Architecture-Major Students (공간의 의미를 연산하는 가상 사용자 모델이 건축설계 전공학생들의 인간행동 시뮬레이션 운용과 이해도에 미치는 효과에 관한 연구)

  • Hong, Seung-Wan
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.34-41
    • /
    • 2016
  • The previous studies argue that using the semantic properties of BIM objects is efficient for simulating the behaviors of autonomous, computer agents, called virtual-users, but such assumption is not proven via evidence-based research approaches. Hence, this present study aims to investigate the empirical effects of a human behavior simulation model equipped the semantics of spaces on the architecture-major students' operation and understanding of the simulation system, compared to a typical path-finding model. To achieve the aim, this study analyzed the survey and interview data, collected in the authentic design projects. The analysis indicates that (1) using a simulation model equipped the semantics of spaces helps the students' operation of the simulation, and (2) it also aids understanding the relationship between the variables of spaces and virtual-users (${\alpha}=0.74$). In addition, the qualitative data inform that the advantages of the simulation model that computes the semantics of spaces stem in the automatic behavioral changes of massive numbers of virtual-users, and efficient detection and activation on the what-if situations. The analysis also reveals that the simulation model has shortcomings in orchestrating the complex data structure between the semantics properties of spaces and virtual-users under multi-sequential scenarios. The results of this study contribute to develop a future design system combining BIM with human behavior simulation.

Design and Implementation of Service Control Point(SCP) for a Next-Generation Intelligent Network based on Internet Environment (인터넷 환경에서의 차세대 지능망 적용을 위한 SCP설계 및 구현)

  • Lee, Ji-Young;Kim, Yeon-Joong;Ma, Young-Sik;Kim, Dong-Ho;An, Sun-Shin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.4
    • /
    • pp.336-349
    • /
    • 2001
  • Intelligent Network (IN) is an architectural framework for the rapid and uniform provision of advanced services. Therefore, Next-generation IN platform should support fast service handling, the dynamic adaptation of various services according to various requirements of users. In this paper, we design and implement the Service Control Point (SCP) that is based on the Internet environment. Especially, we consider the service flexibility, the dynamic distribution of service and propose a set of mechanisms to optimize the performance of this platform. This SCP consists of the platform kernel to control intemal operations, tbe service manager to control all of services, SLPI (Service Logic processing Program Instance) manager to manage each service, and SLPI to handle service interaction. In addition, we propose the Service Creation Environment (SCE) to create easily services on the implemented platfonn and show the example of Call Forwarding service operated on this platform.

  • PDF

Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution (연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화)

  • Lee, Dongkyu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

A NESTING APPROACH IN DISCRETE EVENT SIMULATION FOR INTEGRATING CONSTRUCTION OPERATION AND SCHEDULE MODELS

  • Chang-Yong Yi;Chan-Sik Park;Doo-Jin Lee;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.400-408
    • /
    • 2009
  • Simulation applications for analyzing the productivity of construction operations at operation level and project schedules at project level are crucial methods in project management. The application at two different levels should be very tightly linked to each other in practice. However, appropriate integration at the levels is not achieved in that existing systems do not support to integrate operation models into a schedule model. This paper presents a new approach named to Discrete Event Simulation-Nesting modeling approach, which supports not only productivity analysis at operation level but also schedule management at a project level. The system developed by the authors allows creating operation models at the operation level, maintaining them in operation model library, executing sensitivity analysis to find the behaviors of the operation models when different combination of resources are used as existing DES systems do. On top of the conventional functions, the new system facilitates to find the optimum solution of resource combinations which satisfy the user's interest by computing the hourly productivity and the hourly cost of the operation. By drag-and-dropping an operation model kept in the operation model library, the operation models are integrated into an activity of the schedule model. When a complete schedule model is established by nesting operation models into the schedule model, stochastic simulation based scheduling is executed. A case study is presented to demonstrate the new simulation system and verify the validity of the system.

  • PDF

Establishment of Preservative Green Spaces and Potential Focus Areas by the Green Infrastructure Assessment of the City of Daejeon (녹지기반성 분석에 의한 보전녹지와 중점관리지역 설정에 관한 연구 - 대전광역시를 대상으로 -)

  • Lee, Shi-Young;Shim, Joon-Young;Jang, Min;Heo, Jun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.65-73
    • /
    • 2008
  • Due to the amendment of the Act for Urban Parks in 2005, local governments have to establish long-range plans for securing and managing urban parks and green areas. This study aims to propose a method of setting priorities for green areas of land to be preserved before the development stage through the introduction of the concept of Green Infrastructure Assessment, and provide basic data to establish the network of urban parks and green areas by applying the GIA method to the city of Daejeon. The concept of GIA and the process of analysis have been drawn as a result of literature research and case studies. The results of this study show that an introduction of the GIA concept to set park and open space planning promotes the connection of the city planning process as well as presents very a reasonable source to facilitate sustainable development. Also, other results present a priority ranking for protection of parks and green areas as well as a means to manage potential focus areas. This study, does have research limitations such as a limited study area, scale, and conflicts between domestic and foreign computing data. Further studies need to set the planning process and examine the index survey to apply this method to various situations and areas.

Flexural Behavior and Design of Concrete-filled U-shape Hybrid Composite Beams Fabricated from 570MPa High-strength Steel (570MPa급 고강도강을 적용한 콘크리트 채움 U형 하이브리드 합성보의 휨거동 및 설계)

  • Lee, Cheol Ho;So, Hyun Joon;Park, Chang Hee;Lee, Chang Nam;Lee, Seung Hwan;Oh, Ha Nool
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.109-120
    • /
    • 2016
  • Flexural tests of full-scale concrete-filled U-shape hybrid composite beams were conducted. Ordinary (SS400) and high-strength (SM570) steel plates were used in the web and in the bottom flange of U-shape steel section respectively. The primary objectives were to develop the hybrid section configuration with maximized flexural capacity and to investigate its flexural strength and deformation capacity. All the hybrid test specimens in this study exhibited the plastic moment capacity and resonable deformability. It is shown that the plastic stress distribution can be assumed in calculating the flexural strength of the proposed hybrid composite beams if the plastic neural axis is located within 15% of the total beam depth from the top of the composite slab. The procedure for computing the effective flexural stiffness of hybrid composite beams is also recommended based on test results.

Analyses of Widely Used Design Codes for Pile Foundation Using the t-z Method (t-z 방법을 이용한 말뚝기초 설계기준별 비교분석)

  • Park, Sungwon;Misra, Anil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.33-42
    • /
    • 2012
  • The efficiency of the current design methods for computing pile resistances is analyzed using field load-settlement tests results. Twelve load-settlement test data for drilled shafts and bored piles were obtained from the literature. These load-test data were fitted using the t-z method. Subsequently, the ultimate resistances were evaluated based upon the failure criteria from following methods: (1) the Davisson's approach and (2) settlement corresponding to 5% or 10% shaft diameter approach. The ultimate resistances for these drilled shafts and bored piles were also predicted using methods based on the design code from North America (United States, Canada), Europe, and Asia (Japan). The pile resistances determined from field load-settlement tests were compared with those calculated using the design codes. The comparisons show that most design codes predict a conservative resistance for drilled shafts and bored piles. However, in the case of drilled shafts, we find that some of the design codes can over-predict the resistance and, therefore, should be applied cautiously. This research also shows that the t-z method can be successfully used to predict the ultimate resistance and the load transfer mechanism for a single pile.