• Title/Summary/Keyword: arch bridges

Search Result 114, Processing Time 0.027 seconds

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

Long-term stability after multidisciplinary treatment involving maxillary distraction osteogenesis, and sagittal split ramus osteotomy for unilateral cleft lip and palate with severe occlusal collapse and gingival recession: A case report

  • Kokai, Satoshi;Fukuyama, Eiji;Omura, Susumu;Kimizuka, Sachiko;Yonemitsu, Ikuo;Fujita, Koichi;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.49 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • In this report, we describe a case involving a 34-year-old woman who showed good treatment outcomes with long-term stability after multidisciplinary treatment for unilateral cleft lip and palate (CLP), maxillary hypoplasia, severe maxillary arch constriction, severe occlusal collapse, and gingival recession. A comprehensive treatment approach was developed with maximum consideration of strong scar constriction and gingival recession; it included minimum maxillary arch expansion, maxillary advancement by distraction osteogenesis using an internal distraction device, and mandibular setback using sagittal split ramus osteotomy. Her post-treatment records demonstrated a balanced facial profile and occlusion with improved facial symmetry. The patient's profile was dramatically improved, with reduced upper lip retrusion and lower lip protrusion as a result of the maxillary advancement and mandibular setback, respectively. Although gingival recession showed a slight increase, tooth mobility was within the normal physiological range. No tooth hyperesthesia was observed after treatment. There was negligible osseous relapse, and the occlusion remained stable after 5 years of post-treatment retention. Our findings suggest that such multidisciplinary approaches for the treatment of CLP with gingival recession and occlusal collapse help in improving occlusion and facial esthetics without the need for prostheses such as dental implants or bridges; in addition, the results show long-term post-treatment stability.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Multi-point displacement monitoring of bridges using a vision-based approach

  • Ye, X.W.;Yi, Ting-Hua;Dong, C.Z.;Liu, T.;Bai, H.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.315-326
    • /
    • 2015
  • To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.

Design and Construction Method Considering Turnout for High-speed on The Bridge with Concrete Track (콘크리트궤도에 고속분기기 설치를 고려한 교량설계 및 시공기법)

  • Kim, In-Jae;Oh, Sei-Young;Joo, Hwan-Joong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.71-79
    • /
    • 2008
  • The concrete track is being used at the Phase II of the Kyeongbu High Speed Railway and New Constructed Honam High Speed Railway. When it makes a decision of bridge type, It has to consider about longitudinal forces of Continuous Welded Rail, Displacement at the end of bridges, Up-lift forces for fastener on the track. If it is installed turnout on the bridge, There is likelihood of the deck twist by applying the each difference longitudinal forces at the 4 each rails and the buckling by concentration of rail stress at the turnout. Moreover, If it is installed turnout on the continuous bridge and REJ(Rail Expansion Joint) on the main track or turnout track. It is hard to keep a safety for rail because of coming to twist or folding at the expansion of deck on the turnout track. Therefore when it is a design of bridge with turnout. It need to take bridge type to minimize an additional axial force and a displacement at the turnout. This paper makes a study of the composite steel arch bridge that is able to resolve criteria requirements of safety for track with turnout and suggest a helpful design method for bridge considering track with turnout by being based on design and construction method of Eonyang Bridge at the north part of Ulsan Station in Phase II of the Kyeongbu High Speed Railway.

  • PDF

Squamous Cell Carcinoma in an African Pigmy Hedgehog (Atelerix Albiventris) (아프리카 피그미 고슴도치에서 발생한 편평상피세포암종)

  • Kim, Wan-Hee;Kim, Bang-Hyun;Park, Woo-Ram;Chang, Dong-Woo;Jeong, Seong-Mok;Yoon, Jung-Hee;Kim, Dae-Yong;Nam, Tchi-Chou
    • Korean Journal of Veterinary Pathology
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • Squamous cell carcinoma was diagnosed in a 4.5-year-old male African hedgehog (Atelerix albiventris). The patient was referred to Seoul National University, Veterinary Medical Teaching Hospital after 5 days history of left eye exophthalmos and corneal trauma. He had enlarged upper and lower jaw at the left part of the face and endophthalmitis of the left eye. On radiographic examinations, loss of bone density at the left zygomatic arch and sun-burst type periosteal reaction of left mandible with decreased bone density was noted. Histologically, the neoplastic mass consisted of markedly invasive, cords of nests of squamous epithelial cells. Intercellular bridges and keratin pearl formation were also noted.

  • PDF

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Deformation estimation of plane-curved structures using the NURBS-based inverse finite element method

  • Runzhou You;Liang Ren;Tinghua Yi ;Hongnan Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.83-94
    • /
    • 2023
  • An accurate and highly efficient inverse element labelled iPCB is developed based on the inverse finite element method (iFEM) for real-time shape estimation of plane-curved structures (such as arch bridges) utilizing onboard strain data. This inverse problem, named shape sensing, is vital for the design of smart structures and structural health monitoring (SHM) procedures. The iPCB formulation is defined based on a least-squares variational principle that employs curved Timoshenko beam theory as its baseline. The accurate strain-displacement relationship considering tension-bending coupling is used to establish theoretical and measured section strains. The displacement fields of the isoparametric element iPCB are interpolated utilizing nonuniform rational B-spline (NURBS) basis functions, enabling exact geometric modelling even with a very coarse mesh density. The present formulation is completely free from membrane and shear locking. Numerical validation examples for different curved structures subjected to different loading conditions have been performed and have demonstrated the excellent prediction capability of iPCBs. The present formulation has also been shown to be practical and robust since relatively accurate predictions can be obtained even omitting the shear deformation contributions and considering polluted strain measures. The current element offers a promising tool for real-time shape estimation of plane-curved structures.

Assessment of Visual Characteristics of Urban Bridges using Landscape Simulations - A Case Study of Yanghwaro in the Gyeongui Railroad Area - (경관시뮬레이션을 이용한 도시교량의 시각적 특성 평가 - 경의선 폐철구간 양화로 지역을 대상으로 -)

  • Chun, Hyun-Jin;Kim, Sung-Kyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.75-82
    • /
    • 2010
  • This study formed an estimation of the visual characteristics of urban bridges in Yanghwaro in the Gyeongui Railroad Area using a landscape simulation. Existing theses have formerly only suggested directions for design based on visual preference, but there is as yet no research on the practical process of landscape design. As a result, it is difficult to directly apply this to bridge design. This study found a potential bridge site and presented a direction for bridge design in order to improve the image of the surrounding urban landscape by surveying the visual effects and landscape preferences of different bridge types. An urban landscape was produced using a landscape simulation model and was made the background for the survey. Five bridge types--Girder, Arch, Truss, Cable and Suspension--were selected and presented. The shapes of the bridges were selected based on the floor plan. The results of this study are as follows. In a preference analysis, every bridge except Girder was evaluated as a positive influence. When rating the image, 'artificial' was rated significantly higher than other traits when assessing the background image. When the Girder Bridge was introduced, 'stable' and 'orderly' were both rated highly while 'stable', 'beautiful', 'orderly' and 'interesting' were high with the introduction of the Arch Bridge. 'Beautiful', 'stable', and 'orderly' were given a high value in the introduction of the Truss Bridge and every image except 'natural', 'harmony' and 'orderly' were highly rated in the introduction of the Cable Bridge. Further, every image but 'natural' was highly rated with the introduction of the Suspension Bridge. Based on the analysis of the landscape, there is a difference in preference before and after modeling a bridge type, while the bridge itself is an influence when it is the main object of the simulated scene. This study researched only the shape of the bridge as a part of the landscape but other elements such as stability, economics, and construction are also factors in the design of a bridge. Stability, economics, construction and other factors must be considered when selecting a bridge type in the future.

A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached (댐퍼가 부착된 사장교의 케이블 장력에 관한연구)

  • Park, Yeon Soo;Choi, Sun Min;Yang, Won Yeol;Hong, Hye Jin;Kim, Woon Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 2008
  • Recently, many ocean bridges that connect land to island or island to island have been constructed along with the improvement of the nation's economy. Long-span bridges can be categorized as suspension bridge, cable-stayed bridge, arch bridge and truss bridge. In this study, correction with respect to construction error can be presented on site through the monitoring of the cable tension change of real structure for four major construction stages so that construction accuracy, including the management of profiles, can be improved. A vibration method, the so-called indirect method that uses the cable's natural frequency changes from the acceleration sensor installed on the cable, is applied in measuring cable tension. In this study, the estimation formula for the effective length of cable with damper is presented by comparing and analyzing between actual measurement and analysis result for the change of the cable's effective length. By the way, it is known that the reliability of estimating cable tension by applying the former method that uses the net distance from damper to anchorage is low. Therefore, for future reference of the maintenance stage, the presented formula for estimating the effective length of cable can be used as a reference for the rational decision-making, such as the re-tensioning and replacement of cable.