• Title/Summary/Keyword: arbitrary reflection

Search Result 62, Processing Time 0.032 seconds

Scattering by Arbitrary Shaped Grating Covered with Dielectric Slab (유전체로 덮힌 임의 형태 격자구조의 산란)

  • Jo, Ung-Hui;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.12
    • /
    • pp.9-14
    • /
    • 2000
  • A numerical method for scattering of electromagnetic waves from a arbitrary shaped grating covered with dielectric slab is considered for TE polarization case from the viewpoints of both reflection grating problem and leaky wave antenna problem. The analysis is based on a periodic Green's function and the method of moments. Numerical results involving some combinations of geometric parameters are presented in terms of relative scattered powers of spectral modes and complex propagation constants.

  • PDF

A Study on the Synthesis of Dielectric Constant Potential for Arbitrary Inverse Scattering Pattern Using an Iterative Sampling Method (반복 샘플링법을 사용한 임의 역산란 패턴을 위한 유전율 포텐셜 합성에 관한 연구)

  • 남준석;박의준
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.150-158
    • /
    • 2003
  • In the beam pattern synthesis problem using line source, the relationship between source distribution function and beam pattern may be represented by Fourier transform pair. In this paper, a general method to synthesize the line source distribution for a desired lobe-like beam pattern is presented by developing the nonlinear inversion method based on an iterative sampling technique. This method can be applied to the synthesis of continuously distributed dielectric constants satisfying the desired inverse scattering coefficient patterns when illuminating by TE-polarized and TM-polarized plane waves to arbitrary dielectric material. Furthermore this method can also be applied to the synthesis of transmission line with arbitrary reflection coefficient patterns. Some bandstop spatial filter and dispersive transmission line filter are illustrated for generality.

Diffraction of Electromagnetic Waves by a Dielectric Wedge, Part I: Physical Optics Approximation (쇄기형 유전체에 의한 전자파의 회절, I부 : 물리광학근사)

  • 김세윤;라정웅;신상영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.874-883
    • /
    • 1988
  • A complete form of physical optics solution to the diffraction of electromagnetic waves by a dielectric wedge with arbitrary dielectric constant and general wedge angle is obtained for an incident plane wave with any angle. Based on the formulation of dual integral equation in the spectral domain, the physical optics solution is constructed by sum of geometrical optics term including multiple reflection inside the wedge and the edge diffracted field, of which diffraction functions are represented in a quite simple form as series of cotangent functions weighted by the Fresnel reflection coefficients. Since diffraction patterns of physical optics are discontinous at dielectric interfaces, Part II and III of these three companion papers will be concerned with correction to the error of the physical optics approximation.

  • PDF

Study of Ultrasonic 3-Dimensional Image Reconstruction (초음파를 이용한 3차원 영상 재구성에 관한 연구)

  • 안승옥;홍기상
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 1981
  • An ultrasonic imaging system with fan reflection mode time of fight is developed and its performance has been examined by system implementation. Experimental results obtained indicafe potential of the method for tomographic imaging. The basic concept of this method is reconstruction of reflectivity with reflection data collected in fan mode using a new "arbitrary ray" reconstruction algorithm. Computer simulations as well as experimental results are presented.presented.

  • PDF

Design of Wideband Microwave Absorbers Using Reactive Salisbury Screens with Maximum Flat Reflection

  • Kim, Gunyoung;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.71-81
    • /
    • 2019
  • This paper presents a design methodology for wideband single-layered microwave absorbers with arbitrary absorption at the design center frequency using reactive Salisbury screens. The bandwidth of the absorber increases when the flatness of the reflection response at the design center frequency is maximized. Based on this observation, closed-form design formulas for wideband absorbers are derived. As they are scalable to any design frequency, wideband reactive screens can be systematically realized using two-dimensional periodic crossed-dipole structures patterned on a resistive sheet. Based on this method, a single-layered absorber with a 90% bandwidth improved to 124% of the design center frequency is presented. For the purpose of physical demonstration, an absorber with a design center frequency of 10 GHz is designed and fabricated using a silver nanowire resistive film with a surface resistance of 30 Ω/square. The measured absorption shows a good agreement with both the calculation and the electromagnetic simulation.

Combined Wave Reflection and Diffraction near the Upright Breakwater (직립 방파제 주위에서 파랑의 반사 및 회절의 혼합)

  • Shin, Seung Ho;Gug, Seung Gi;Yeom, Won Gi;Lee, Joong Woo
    • Journal of Korean Port Research
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 1991
  • This study deals with the analytical and numerical solution for the combined wave reflection and diffraction near the impermeable rigid upright breakwater, subject to the excitation of a plane simple harmonic wave coming from infinity. Three cases are presented : a) the analytical solution near a thin semi-infinite breakwater, b) the analytical solution near the semi-infinite breakwaters of arbitrary edge angles, $30^{\circ},\;45^{\circ},\;and\;90^{\circ}$, c) the numerical solution near a detached thin breakwater the results are presented in amplification factor and wave height diagrams. Moreover, the amplification factors near the structure(2 wavelength before and behind the structure) are compared for the given cases. A finite difference technique for the numerical solution was applied to the integral equation obtained for the wave potential.

  • PDF

A New Design Method for Multisection Impedance Transformer Based on the Inverse Scattering (역산란을 이용한 다단 임피던스 트랜스포머의 새로운 설계 방법)

  • 이민수;박영태
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.89-94
    • /
    • 2001
  • A new design method of the microwave multisection impedance transformer is proposed. This method is based on the inverse scattering theory using the frequency domain reflection coefficient of the transformer to be designed. In the first step, the permittivity profile of a virtual one-dimensional dielectric medium is reconstructed using the desired reflection coefficient. In the second step, the transformer which is equivalent to the reconstructed dielectric medium in view of reflection characteristics is synthesized. Theoretically, this method can be used to design the impedance matching transformers with arbitrary passband characteristics within the limit of the Bode-Fano criteria[1]. Our approach is examined for two design examples to show that it is valid.

  • PDF

Application of the Inverse Scattering Theory to the Design of the Tapered Impedance-Matching Line (테이퍼형 임피던스 정합선로의 설계를 위한 역산란 이론의 응용)

  • 송충호;이상설
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1139-1146
    • /
    • 2001
  • A tapered impedance-matching line is designed by an inverse scattering method for the one-dimensional medium. The phase compensation factor(PCF) is introduced in order to reduce the error in the inverse scattering process to reconstruct the permittivity profile. By estimating the permittivity profile of the virtual one-dimensional dielectric medium whose reflection characteristic is the same as that of the specified matching line, the matching line is synthesized. The method can be used to design impedance-matching lines with arbitrary passband characteristics without any equivalent circuit analysis. The inevitable errors in the method using the time-domain reflection coefficient can be avoided by using the frequency-domain reflection coefficient.

  • PDF

A Code Concealment Method using Java Reflection and Dynamic Loading in Android (안드로이드 환경에서 자바 리플렉션과 동적 로딩을 이용한 코드 은닉법)

  • Kim, Jiyun;Go, Namhyeon;Park, Yongsu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.1
    • /
    • pp.17-30
    • /
    • 2015
  • Unlike existing widely used bytecode-centric Android application code obfuscation methodology, our scheme in this paper makes encrypted file i.e. DEX file self-extracted arbitrary Android application. And then suggests a method regarding making the loader app to execute encrypted file's code after saving the file in arbitrary folder. Encrypted DEX file in the loader app includes original code and some of Manifest information to conceal event treatment information. Loader app's Manifest has original app's Manifest information except included information at encrypted DEX. Using our scheme, an attacker can make malicious code including obfuscated code to avoid anti-virus software at first. Secondly, Software developer can make an application with hidden main algorithm to protect copyright using suggestion technology. We implement prototype in Android 4.4.2(Kitkat) and check obfuscation capacity of malicious code at VirusTotal to show effectiveness.

Analytical Method of Partial Standing Wave-Induced Seabed Response in Finite Soil Thickness under Arbitrary Reflection (임의반사율의 부분중복파동장에서 유한두께를 갖는 해저지반 내 지반응답의 해석법)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Kyu-Han;Kim, Dong-Wook;Shin, Bum-Shick
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.300-313
    • /
    • 2014
  • Most analytical solutions for wave-induced soil response have been mainly developed to investigate the influence of the progressive and standing waves on the seabed response in an infinite seabed. This paper presents a new analytical solution to the governing equations considering the wave-induced soil response for the partial standing wave fields with arbitrary reflectivity in a porous seabed of finite thickness, using the effective stress based on Biot's theory (Biot, 1941) and elastic foundation coupled with linear wave theory. The newly developed solution for wave-seabed interaction in seabed of finite depth has wide applicability as an analytical solutions because it can be easily extended to the previous analytical solutions by varying water depth and reflection ratio. For more realistic wave field, the partial standing waves caused by the breakwaters with arbitrary reflectivity are considered. The analytical solutions was verified by comparing with the previous results for a seabed of infinite thickness under the two-dimensional progressive and standing wave fields derived by Yamamoto et al.(1978) and Tsai & Lee(1994). Based on the analytical solutions derived in this study, the influence of water depth and wave period on the characteristics of the seabed response for the progressive, standing and partial standing wave fields in a seabed of finite thickness were carefully examined. The analytical solution shows that the soil response (including pore pressure, shear stress, horizontal and vertical effective stresses) for a seabed of finite thickness is quite different in an infinite seabed. In particular, this study also found that the wave-induced seabed response under the partial wave conditions was reduced compared with the standing wave fields, and depends on the reflection coefficient.