• 제목/요약/키워드: approximate Bayesian bootstrap

검색결과 3건 처리시간 0.013초

Multinomial Group Testing with Small-Sized Pools and Application to California HIV Data: Bayesian and Bootstrap Approaches

  • 김종민;허태영;안형진
    • 한국조사연구학회:학술대회논문집
    • /
    • 한국조사연구학회 2006년도 춘계학술대회 발표논문집
    • /
    • pp.131-159
    • /
    • 2006
  • This paper consider multinomial group testing which is concerned with classification each of N given units into one of k disjoint categories. In this paper, we propose exact Bayesian, approximate Bayesian, bootstrap methods for estimating individual category proportions using the multinomial group testing model proposed by Bar-Lev et al (2005). By the comparison of Mcan Squre Error (MSE), it is shown that the exact Bayesian method has a bettor efficiency and consistency than maximum likelihood method. We suggest an approximate Bayesian approach using Markov Chain Monte Carlo (MCMC) for posterior computation. We derive exact credible intervals based on the exact Bayesian estimators and present confidence intervals using the bootstrap and MCMC. These intervals arc shown to often have better coverage properties and similar mean lengths to maximum likelihood method already available. Furthermore the proposed models are illustrated using data from a HIV blooding test study throughout California, 2000.

  • PDF

Comparing Imputation Methods for Doubly Censored Data

  • Yoo, Han-Na;Lee, Jae-Won
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.607-616
    • /
    • 2009
  • In many epidemiological studies, the occurrence times of the event of interest are right-censored or interval censored. In certain situations such as the AIDS data, however, the incubation period which is the time between HIV infection and the diagnosis of AIDS is usually doubly censored. In this paper, we impute the interval censored HIV infection time using three imputation methods. Mid imputation, conditional mean imputation and approximate Bayesian bootstrap are implemented to obtain right censored data, and then Gibbs sampler is used to estimate the coefficient factor of the incubation period. By using Bayesian approach, flexible modeling and the use of prior information is available. We applied both parametric and semi-parametric methods for estimating the effect of the covariate and compared the imputation results incorporating prior information for the covariate effects.

대체방법별 GEE추정량 비교 (Comparison of GEE Estimators Using Imputation Methods)

  • 김동욱;노영화
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.407-426
    • /
    • 2003
  • 본 연구에서는 범주형 반복측정자료의 일반화추정방정식(GEE)모형에서 결측이 발생할 경우 결측값 대체(imputation)방법들에 대한 성능을 비교하고자 한다. 설명변수 X가 부분적으로 결측을 갖는 경우 GEE추정량을 계산할 수 없다. 본 논문에서는 시점에 따라 값이 변하는 설명변수에 결측이 있는 경우 GEE모형에서 결측값을 추정하는 7가지의 대체방법을 다루며, 실제자료와 모의실험을 통하여 대체방법별 GEE추정량의 성질을 연구한다. 대체방법별 GEE추정량의 성능을 비교하기 위해 우리는 반응변수가 범주형인 반복측정모형에서 완전자료의 GEE추정량과 완전자료에서 결측을 생성하여 결측값에 각 대체방법을 적용하여 대체한 후 구한 GEE추정량을 비교한다. 대체방법으로는 (1) 단순삭제 (2) 표본 평균대체 (3) 행 평균대체 (4) 횡 시점 회귀대체 (5) 이월대체 (6) 베이지안 붓스트랩 (7) 근사적 베이지안 붓스트랩에 대해서 살펴본다. 결측과정(missing mechanism)은 무시할 수 있는 무응답(ignorable nonresponse)을 가정하며, 결측 발생에 대해서는 원자료의 시점 무응답 패턴(wave nonresponse pattern)을 고려하여 발생시키거나 또는 시점 무응답 패턴을 고려하지 않고 단순임의추출로 결측을 발생시키는 방법을 각각 고려한다.