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Abstract

In many epidemiological studies, the occurrence times of the event of interest are right-censored or interval
censored. In certain situations such as the AIDS data, however, the incubation period which is the time
between HIV infection and the diagnosis of AIDS is usually doubly censored. In this paper, we impute the
interval censored HIV infection time using three imputation methods. Mid imputation, conditional mean
imputation and approximate Bayesian bootstrap are implemented to obtain right censored data, and then
Gibbs sampler is used to estimate the coefficient factor of the incubation period. By using Bayesian ap-
proach, flexible modeling and the use of prior information is available. We applied both parametric and
semi-parametric methods for estimating the effect of the covariate and compared the imputation results

incorporating prior information for the covariate effects.

Keywords: Doubly censored data, conditional mean imputation, approximate Bayesian bootstrap, Gibbs
sampler.

1. Introduction

Doubly censored data can be found in many epidemiological studies especially in the AIDS data.
The incubation period which is the time between HIV infection and the diagnosis of AIDS is usu-
ally doubly censored. That is, the HIV infection time is interval censored and also the time of the
diagnosis of AIDS is right censored. Many statistical approaches have been applied to estimate the
doubly censored incubation period distribution and to find out the relationships with the covari-
ates. Sun (2004) reviews the statistical methods that have been proposed in many literatures for
analyzing doubly interval censored data. Following Sun (2004), most researchers focus on two basic
problems: nonparametric estimation and regression analysis of the AIDS incubation period. For the
nonparametric estimation, several authors have proposed to estimate the distribution function of
the AIDS incubation time (de Gruttola and Lagakos, 1989; Gomez and Calle, 1999; Sun, 1995). For
the regression analysis, Kim et al. (1993) used the full likelihood to analyze AIDS incubation time
and Sun et al. (1999) proposed an estimating equation based method to investigate the effect of
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covariates on AIDS incubation time. These regression methods are the semi-parametric inferences
based on the proportional hazards model. In addition the two-stage parametric model for estimat-
ing the effect of covariates of AIDS incubation time for doubly censored data has been proposed by
Brookmeyer and Goedert (1989).

All these proposed methods for nonparametirc, semi-parametric and parametric based inference use
the original doubly censored data which are hard to analyze. There was a modification in using
the original doubly censored data and many researchers applied the imputation methods. Law and
Brookmeyer (1992) studied the effect of mid-point imputation on the analysis of doubly censored
data and Pan (2001) proposed a multiple imputation approach for Cox regression analysis to both
interval and doubly censored data. Geskus (2001) considered four different imputation methods to
impute the interval censored HIV infection time and estimated the doubly censored AIDS incubation
period. With or without imputation, most of the papers are based on the frequentist paradigm when
estimating the covariate effect on the incubation period. In this paper we propose to use Bayesian
approach when estimating the covariate effect.

Recently Bayesian analysis have been applied to survival data more frequently due to its advanced
computational skills. Generally nonparametric Bayesian methods (Kalbfleisch, 1978; Arjas and
Gasbarra, 1994; Berliner and Hill, 1988) and semi-parametric methods (Burridge, 1981; Sinha and
Dey, 1997) are applied. Bayesian paradigm has advantage for modeling complex survival models
due to censoring and it enables to incorporate prior information. However, the use of Bayesian
approaches with doubly censored data has been rather limited especially with the AIDS study.
This is due to the short history of AIDS research and thus there does not exist much information
on the distribution of the AIDS incubation period.

In this paper we compare three imputation methods when estimating the covariate effect through
Bayesian approach. We consider mid imputation and the conditional mean imputation both of
which are single imputation methods and also the approximate Bayesian bootstrap(ABB) which
is a multiple imputation method. These imputation methods change the doubly censored AIDS
incubation period data to right censored data and make it easy to analyze. After imputing the
interval censored HIV infection time, Bayesian approach is used to estimate the covariate effect.

2. Background

2.1. Imputation methods

In the AIDS study where the data are doubly censored, it is hard to calculate the incubation period
and many imputation methods are used to impute the HIV infection time. There are single imputa-
tion methods such as “midpoint imputation”, “mean imputation”, “conditional mean imputation”,
“hot deck” etc., and multiple imputation such as “approximate Bayesian bootstrap”, “poor man’s
data augmentation” etc.. There are advantages and disadvantages of both methods. For the single
imputation method, it is easy to implement but they do not account for variability between impu-
tations. On the other hand, multiple imputation minimizes standard error and increases efficiency
of the estimates but they are more difficult to perform (Rubin,1987). In this paper, we consider
three general imputation methods for missing data problems: mid imputation, conditional mean
imputation and approximate Bayesian bootstrap.

2.1.1. Mid imputation In epidemiological studies including the AIDS studies, individuals are
periodically screened for the evidence of infection. It is only known that the exact infection time is
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in the interval (L;, R;) where L; is the known calender time of the last negative test and R; is the
known calender time of the first positive test for subject 7. The simplest method for estimating the
infection time is to use the midpoint of the interval (L;, R;) (Law and Brookmeyer, 1992).

2.1.2. Conditional mean imputation Conditional mean imputation is an alternative method to
reduce the bias of rather simpler imputation method by using the expected infection time given
that infection time occurred between L; and R; (Gauvreau et al., 1994). Let f be the pdf of infection
time among the individuals and F' be the corresponding cdf. Then the imputed infection time of
subject 4 is estimated as
R ¢ a
= TILi—tf(tA)ilf—, where F(a) = / f(t)dt. (2.1)
F(R:) — F(Li) 0

In order to get the imputed infection time we need a parametric model for the infection time.

2.1.3. Approximate Bayesian bootstrap(ABB) Approximate Bayesian bootstrap imputation met-
hod was originally proposed by Rubin (1987) to approximate the Bayesian bootstrap for the cat-
egorical data. Pan (2000) used ABB for a two-sample test when the data were interval censored.
We implement ABB to the HIV infection time which is also interval censored and make the doubly
censored incubation time as right censored. We will follow the formulation of Pan (2000) for interval
censored data with modification for doubly censored data which we have. The basic scheme of the
ABB applied to doubly censored data is given as follows:

Stepl: Form=1,..., M,

e Draw two bootstrap samples {(U;;”% Vigm))} and {(Mi(;n)7 6f;n))} from each of the inter-
val censored infection time {(U;;, Vi;)} and right censored AIDS onset time {(M,;,d:;)}
samples which are given for the two groups. Here, i = 1,...,n; and j = 1,2, and d;; is
a censoring indicator for the AIDS onset time.

e Estimate the survival functions from the HIV infection time bootstrap samples as SA'fm)
and S'ém, respectively.

e For each of the two original infection time samples, generate a set of observations Tf;'”

as follows. For j = 1,2 and ¢ = 1,...,n;, sample X;; from the distributions ng),
conditional on that {(U;; < X;; < V;;)} and let Tig-m) = Xi;.

e Combine the imputed infection time bootstrap samples with the AIDS onset time boot-
strap samples.

e Calculate the AIDS incubation time as Kgﬂl) =M 1(]m ) TZ.(;") and obtain a possibly right

censored bootstrap samples as {(Y,L-gm), 557))}, where 62(;”) is a censoring indicator for
vim,

ij
Step2: Use each {(Y'Z.g»m),éf;n))} to calculate the coefficient estimator 3™ and its variance estimate
Step3: Let

e 1 — 7=

¥, (m) — ME*(m) + (1 + %) var (ﬁ/(\D,’ﬂ\M)> .

For estimating the survival functions in Step 1, we used Expectation-Maximization Iterative Convex
Minorant(EMICM) estimator of the distribution function proposed by Wellner and Zahn (1997) and
used Gibbs sampler to estimate the coefficient.
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3. Two Approaches for Estimating AIDS Incubation Period

3.1. Parametric approach

To estimate the covariate effect of the incubation period distribution, we assume the incubation
period distribution follows a Weibull distribution which is the most widely used parametric survival

model. Suppose we have independent identically distributed survival times y = (y1, ... ,yn)’, each
having a Weibull distribution with the pdf:
a Y a—1 T\
=(=-]{Z - = . A
1) = (5) (1) exp(=(3)7), ¥>0,a>0,b>0 (31)

A random variable following Weibull distribution can be denoted as W (a,b), where a is the shape
parameter and b is the scale parameter. Formula (3.1) has the same form if we translate o = @ and
~v = (1/b)* and the pdf has the form as (3.2):

f(yla, ) = vy texp(="), ¥ >0, a>0, 7>0. (3.2)
It is convenient to write (3.2) in terms of the parameterization A = log(v), leading to

Flyle, A) = ay®™ " exp(A — exp(A)y®)-

To build the Weibull regression model, we introduce the covariates through \; = ;3. Denote the
censoring indicator as v = (v1,...,v,) and the obersved dasta as D = (n,y,z,v). Then the joint
posterior has the form as (3.3) (Ibrahim et al., 2001):

(8, a|D) o a®+ 4 exp [Z {Vlzz;ﬁ + vi{a — 1) log(yi) — yi* exp(zi6) }

—roo— 28~ uoyza‘(ﬁ—uo)} , (3.3)

where o has a gamma, prior G(ag, ko) and 8 has a normal prior N(po, £¢). For the Weibull regression
model the conditional posterior distribution of [|3, D] and [8|a, D] are log-concave, and thus the
implementation of the Gibbs sampler is straightforward.

3.2. Semi-parametric approach

We applied another approach through semi-parametric modeling. The gamma process is perhaps
the most commonly used nonparametric prior process for the baseline cumulative hazard function
in the Cox model. The process {Z(y) : y > 0} is called gamma process and is denoted by Z(y) ~
GP(ca(y),c) when it has the properties as follows (Ibrahim et al., 2001):

(i) Z2(0)=0
(ii) Z(y) has independent increment disjoint intervals, and
(iii) for y > s, Z(y) — Z(s) ~ G{c(aly) — a(s)), c), where c is the confidence parameter about the

mean afy).

For the semi-parametric modeling, we use the counting process notation. For subjects : =1,...,n,
we observe processes N;(y) which is the number of failures at time y. The intensity process I;(y) is
given by

L(y)dy = E (dN:(w)|F, ), (34)
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where dN;(y) is the increment of N; over [y,y + dy) and F,- is the available data just before time
y. As dy — 0 (3.4) becomes the instantaneous hazard at time y for subject . It is assumed to have
the proportional hazards form

Li(y) = Yi(y) Ao(y) exp(8'z:),

where Y;(y) is an observed process taking value 1 or 0 whether the subject ¢ is observed at time y
or not. The joint posterior distribution is defined by

P(B, Ao(y)| D) ox P(D|B, Ao(y))P(8)P(Ao(y)), (3.5)

where D = {N;(y),Yi(y),z;i = 1,...,n} is the observed data. Looking through the form of the
likelihood of P(D|8, Ao(y)) in (3.5), dN;(y) seems as it is independent Poisson random variables
with mean I;(y)dy. Hence, for implementing the Gibbs sampler, the variables are assigned prior
distributions as follows:

dN;(y) ~ Poisson(I;(y)dy), (3.6)

where I;(y)dy = Yi(y)exp(8 z:;)dAo(y). The increment in the integrated baseline hazard function
occurring in interval [y,y -+ dy) can be written as dAo(y) = Ao(y)dy. The conjugate prior for the
Poisson mean is the gamma distribution. Kalbfleisch (1978) suggested a conjugate independent
increments prior and it can be written as

dho(y) ~ G (cdAj(y), ). (3.7)

We set dA§(y) = rdy, where 7 is a prior guess at the failure rate per unit time and dy is the size of
the time interval. The parameter c is degree of confidence in prior guess for increment in unknown
hazard function.

4. Simulation

We conducted a simulation study to investigate the performance of the imputation methods incor-
porating prior distributions for the binary covariate effect which indicates two different group. In
addition the target range of the simulation study is to investigate the effect of the interval wide effect
as well as the censoring amount. The sample size for each group was 50. To generate doubly cen-
sored data, we first generated the exact HIV infection time 7} from uniform distribution U[10, 30].
The incubation time Y; for the two group was generated from Weibull distribution with the same
shape parameter 2.5 and the scale parameter was set differently with W (2.5, 10) for the first group
and W(2.5,12) for the second group respectively so that 3 = —0.455 for the Weibull model and
the Cox model. To generate interval censored HIV infection time, the left interval L; and the right
interval R; was set to T; plus minus a specified Uniform distribution. In order to investigate the
interval width effect we used two Uniform distributions U[0,5] and U[0,7]. Then the AIDS onset
time S; was computed as S; = T; + Y;. The AIDS onset time was set to right censored with two
different censoring amounts, moderately censored with 20% and heavily censored with 50% of the
data, and we investigated if there was a difference in the performance of the imputation methods
based on MC(Monte Carlo) error between the censoring amount. Under four different types of
data, we compared the three imputation methods incorporating prior distributions of the covariate
effect. The results when the HIV infection time is uncensored are investigated as well. Table 4.1
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Table 4.1. Simulation resuits of uncensored HIV infection time assuming AIDS incubation time follows Weibuli distribution with
prior a ~ exp(0.01), 8 ~ N (0, 1000)
Mean of 8 MC error 2.5% 97.5%
—0.4424 0.0021 —0.8473 —0.0440

Table 4.2. Simulation results of four different data sets with three imputation methods under prior distributions o ~ exp(0.01),
B ~ N(0,1000). AIDS incubation time is assumed to follow Weibull distribution.

Inll\i;l‘:}?zg)n Statistics Moderate_5 Moderate_7 Heavy.5 Heavy_7
Mean of 3 —0.4335 —-0.4102 —0.4562 —0.4225

mid point MC error 0.0021 0.0020 0.0023 0.0022
2.5% 0.8382 —0.8090 —0.8609 —0.8229

97.5% —0.0328 —0.0111 —0.0500 —0.0217

Mean of 3 —0.4380 —0.4167 —0.4594 —0.4209

conditional MC error 0.0020 0.0021 0.0022 0.0020
mean 2.5% —0.8378 —0.8179 —0.8577 —0.8191
97.5% —0.0329 —0.0136 —0.0669 -0.0230

Mean of 3 —0.5086 —0.4849 —0.4978 —0.2703

ABB MC error 0.0026 0.0025 0.0021 0.0020
2.5% —0.9192 —0.8930 —0.9009 -0.6678

97.5% —0.0928 —0.0770 —0.0972 0.1299

is the result when the infection time is uncensored and the incubation time is assumed to follow
a Weibull distribution. For the parametric approach, the prior distribution for parameters of the
Weibull model was set to o ~ exp(0.01), 8 ~ N(0,1000). Since there is no prior information about
the parameters, sufficiently large values of variance for 3 are allocated to generate noninformative
prior distribution. Tt can be seen from Table 4.1 that the posterior mean of 3 converges to —0.4424
which is close to the true value of 3, —0.466 and has MC error as which is quite small.

For the assessment of the imputation methods incorporating prior distributions of the covariate
effect, we investigated the posterior mean of 3 and its MC error and 95% confidence interval for
differently generated data sets. The generated data sets have two different interval width for HIV
infection time and two different censoring amounts and thus we have four different data sets. The
results are shown in Table 4.2. The four different data sets are noted as Moderate_5, Moderate_7,
Heavy_5 and Heavy_7. Moderate_5 is the simulated data when AIDS onset is moderately cen-
sored(20%) and two intervals (L;, R;) of the HIV infection time is computed as T; + U[0,5]. With
the same notation Heavy_7 is the simulated data when AIDS onset is heavily censored(50%) and
the two intervals (L;, R;) of the HIV infection is computed as T; + U[0,7]. The prior of 3 is set
to B ~ N(0,1000) with a vague precision and « is set to o ~ exp(0.01). For conditional mean
imputation, lognormal distribution LN(2.82,0.32) was chosen for the HIV infection distribution,
and for approximate Bayesian bootstrap(ABB) five data sets were used, that is M = 5. It can be
seen that the MC error for all the data sets are close to 0.002. Considering the posterior mean,
moderately censored data with conditional mean imputation has the closest posterior mean of 3 to
the original value(—0.455) when the interval width is shorter. As the interval width grows larger
ABB has the closet posterior mean to the original value. When the data are heavily censored, mid
imputation has the posterior mean of 8 which is closest to the original value for both different in-
terval widths. In general, except for Moderate_7, simple methods like conditional mean imputation
and mid imputation performs well. The results in Table 4.2 are similar to those in Table 4.1 except
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Table 4.3. Simulation results of uncensored HIV infection time under different prior distributions assuming AIDS incubation time
follows Cox's regression with » = 1, ¢ = 0.5 and 3 ~ N(0, 1000) .

Mean of 3 MC error 2.5% 97.5%
—0.4677 0.0021 -0.8705 —0.0668

Table 4.4. Simulation results of four different data sets with three imputation methods under prior distributions r = 1, ¢ = 0.5
and 8 ~ N (0, 1000). AIDS incubation time is assumed to follow Cox’s regression model.

Iml\fl)z:}?;gm Statistics Moderate_5 Moderate_7 Heavy_5 Heavy_7
Mean of 3 —0.4365 —0.4314 —0.4999 —0.4572

mid point MC error 0.0020 0.0020 0.0019 0.0021
2.5% —0.8421 —0.8356 —0.9035 —0.8643

97.5% —0.0328 —0.0344 —0.0969 —0.0570

Mean of 3 —0.4534 -0.4477 —0.4879 —0.4615

conditional MC error 0.0020 0.0022 0.0020 0.0020
mean 2.5% —0.8605 —0.8528 —0.8938 —0.8581
97.5% —0.0489 —0.0431 —0.0918 —0.0606

Mean of 3 —0.5168 -0.5237 —0.4423 —0.2879

ABB MC error 0.0021 0.0022 0.0020 0.0021
2.5% —0.9288 -0.9358 —0.8458 —0.6923

97.5% -0.1079 —0.1150 -0.0415 0.1146

for ABB with Heavy_7 data, which means that the performance of the imputation methods are
satisfactory. We can also see that there is no censoring effect when the data have the same interval
width for both mid point imputation and conditional mean imputation. On the other hand as the
interval width gets wider, the difference between the posterior mean of 5 and the original value gets
larger when the data have the same amount of censoring for both mid imputation and conditional
mean imputation. As for the ABB, there seems to be no interval width effect but it has censoring
effect.

We next assume that the AIDS incubation time follows Cox’s regression model. For prior dis-
tribution, 8 was also set to 3 ~ N(0,1000) which is the same as the parametric approach for
noninformative prior distribution. For other prior distributions, we must decide r and ¢, defined in
Section 3.2, which is a prior guess at failure rate and degree of confidence in prior guess for incre-
ment in unknown hazard function, respectively. We set r = 1 and ¢ = 0.5 considering a situation
with weak confidence for prior guess of increment. The results are shown in Table 4.3 when the
HIV infection time is uncensored. In Table 4.3, we can see that the posterior mean converges to
—0.4677 which is close to the true value —0.455 with MC error 0.0021.

The results for different imputation methods are shown in Table 4.4. First we can see the MC error
for all the data sets are close to 0.002, which gives the same result as when the AIDS incubation
period is assumed to follow Weibull distribution.

Considering the posterior mean, when the data is moderately censored, conditional mean imputation
has the closest posterior mean value of 3 for both interval widths. On the other hand for the heavily
censored data, ABB and mid imputation has the closest posterior mean value of § for shorter and
wider HIV interval width respectively. Investigating the interval width effect and censoring effect,
for conditional mean imputation there are no either effects but for mid imputation and for ABB
there seems to be an interaction effect between the two effects. For all the simulation data, with both
parametric and semi-parametric approach, in order to investigate the convergence of the posterior
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Table 5.1. Estimators for each imputation method with parametric approach for AIDS Cohort Study under prior distributions
a ~ exp(0.1), B ~ N(0.7,0.0001)

Imputation

Method Mean of 3 MC error 2.5% 97.5%

mid 0.6760 595E —5 0.6567 0.6958
conditional mean 0.6759 6.13E — 5 0.6564 0.6954
ABB 0.6759 5.94FE -5 0.6566 0.6954

mean we set 3 chains with different initial values and updated the model for 10000 iterations and
monitored the convergence of the MCMC simulation. The figures of multiple chain trace plots and
Gelman_ Rubin convergence statistics are not shown here, but for all the imputation methods, the
multiple chains mix rapidly and the potential scale reduction estimator was near 1.

5. Real Example

We also applied our methods to the real data discussed in Kim et al. (1993) from the AIDS cohort
study of hemophiliacs, ane investigated the performance of the imputation methods under the
different priors of the covariate effect. This study consists of the individuals with Type A or B
hemophilia who were at risk of HIV infection through the contaminated blood factor they received.
The subjects were classified into two groups according to the amount of blood they received. The
data have 188 HIV infected subjects with all interval censored infection time and right censored
AIDS onset time. The censoring rate of the incubation time is 82% and the length of the HIV
infection width is mostly under 10.

For the parametric approach we assume that the incubation time follows the Weibull distribution.
We introduce the covariate through \; = 8z; and the parameter we are interested in is 3, which is
the coefficient of the treatment level. Before estimating 3 we imputed the interval censored HIV
infection time using mid imputation, conditional mean imputation and ABB multiple imputation.
After imputing we could obtain the right censored AIDS incubation time. To estimate the covariate
effect using Gibbs sampler, we first setup 3 to follow 3 ~ N(0.7,0.001). The prior mean for 3 is
chosen with strong confidence since the variance is near zero. This prior information about 8 was
achieved by other literatures (Kim et al., 1993; Sun et al., 1999) which analyzed the same AIDS
cohorts data using Cox regression. The methods they have used to estimate the covariate effect
of the level of the treated group are different but the estimates are all close to 0.7 (0.69 obtained
by Kim et al., 1993 and 0.7039 obtained by Sun et al., 1999). We used this prior for 4 in both
parametric approach and semi-parametric approach. For the parametric approach assuming that
the AIDS incubation period follows Weibull distribution, the prior distribution for o was given
a ~ exp(0.1). The results are given in Table 5.1.

As shown in Table 5.2, all three imputation methods have posterior mean of 3 as 0.676. This value
is close to those obtained by Kim et al. (1993) and Sun et al. (1999). When we compare the three
imputation methods, ABB has the smallest MC error (5.94E — 5) and mid imputation has quite the
same MC error (5.95E —5) as ABB. On the other hand conditional mean imputation has the largest
MC error which is (6.13F' —5) among the three imputation methods but the difference among them
are quite small. The posterior mean for 3 is 0.6760 for all imputation methods indicating that the
heavily treated group has shorter incubation period than the lightly treated group.

For the semi-parametric approach, gamma process was used and we fixed the prior guess of failure
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Table 5.2. Estimators for each imputation method with semi-parametric approach for AIDS Cohort Study under prior distributions
r=0.1, ¢ = 0.01, 8 ~ N(0.7,0.0001)

Iml\ﬁ[):tt}?:,gm Mean of 3 MC error 2.5% 97.5%
mid 0.7204 1.85E — 4 0.6585 0.7821
conditional mean 0.7189 2.03F -4 0.6575 0.7791
ABB 0.7000 6.23E -5 0.6804 0.7197

rate as v = 0.01 and the degree of confidence in prior guess for increment in unknown hazard
function parameter as ¢ = 0.1. As shown in Table 5.2, ABB has the smallest MC error (6.23E — 5)
and the conditional mean imputation has the largest MC error (1.85F — 4). The posterior mean
of 3 for all the three imputations are near 0.7 which also indicate that the heavily treated group
had shorter incubation period than the lightly treated group. For both results assuming Weibull
distribution and Cox’s regression model, the posterior means of 3 are quite similar between groups,
but when considering the MC error ABB has the smallest value and the conditional mean imputation
has the largest value.

For the real example, we also set 3 multiple chains with different initial values and monitored the
convergence of the MCMC simulation. For all the imputation methods the multiple chains mix
rapidly and also the potential scale reduction estimator was near 1.

6. Conclusion and Discussion

This paper considered estimation of the covariate effect when the data are doubly censored. It is
difficult to analyze the doubly censored data, and thus there have been many imputing methods
proposed. Imputing makes the original data easy to analyze with the existing statistical methods.
We compared three imputation methods: Mid imputation and conditional mean imputation for
single imputation methods and ABB for multiple imputation method. After imputing the interval
censored HIV infection time, two approaches for estimating the AIDS incubation time were applied.
Weibull model was applied to the parametric approach and gamma process was applied to the semi-
parametric approach. After imputing the incubation time we proposed to estimate the covariate
effect of AIDS incubation period through Bayesian approach using Gibbs sampler. We compared
the results of the 3 imputation methods under certain prior distribution of the parameters. In order
to investigate the effect of the HIV infection time interval width and the severity of the censoring
amount of AIDS onset period, a simulation study was done. The simulation study shows that, both
for the parametric approach and the semi-parametric approach, rather simpler imputation methods
such as mid imputation and conditional mean imputation performs well rather than ABB. Also the
interval width effect and the censoring effect depends on the assumption of the AIDS incubation
period. As for the real example ABB had the best performance respect to the MC error in both
parametric and semi-parametric approach between the three imputation methods. This result is the
same when the simulation setting is Heavy_5 since in the real data example, the data is also heavily
censored and the length of the HIV infection width is mostly of 10. The generalization of our results
can be of limited since the results can depend on the data structure and the effect of the truncation.
However from our simulation study and through the real example, simple imputation methods like
mid imputation and conditional mean imputation also perform as well as quite complex imputation
methods like ABB. We have also shown how to incorporate the prior distribution in estimating
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the covariate effect when AIDS incubation period are doubly censored. With using a Bayesian
approach, flexible modeling and the use of prior information is available. Further works might be
to compare through Bayesian paradigm with other imputation methods in nonparametric survival
models with mixing models as well.
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