Multinomial Group Testing with Small-Sized Pools and Application

to California HIV Data: Bayesian and Bootstrap Approaches

Jong-Min Kim

Statistics, Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN 56267,
USA

Tae-Young Heo

Electronics and Telecommunications Research Institute, Daejeon, 350-700, Republic of Korea
Hyonggin An!

Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, 52242-
1009, USA

! Address for correspondence: Hyonggin An, Department of Biostatistics, College of Public Health, University of
Iowa, Iowa City, lowa, 52242-1009, USA Email: hyonggin-an@uiowa.edu

-131 -



Summary. This paper consider mulcinqmial group testing which is concerned with classification
cach of N given units into one of k disjoint categoires. In this paper, we proposc cxact Bayesian,
approximate Baycsian, bootstrap methods for cstimating individual catcgory proportions using the
multinomial group testing model proposcd by Bar-Lev et al (2005). By the comparison of Mcan
Squrce Error (MSE), it is shown that the cxact Baycsian method has a better cfficiency and con-
sistency than maximum likelihood method. We suggest an approximate Baycsian approach using
Markov Chain Montc Carlo (MCMC) for posterior computation. We derive cxact credible inter-
vals basced on the cxact Bayesian cstimators and present confidence intervals using the bootstrap
and MCMC. Thesc intervals arc shown to often have better coverage properties and similar mean
lengths to maximum likelihood method already available. Furthermore,the proposed modcls arc

illustrated using data from a HIV blooding test study throughout California, 2000.

Keywords: Group testing; Multinomial distribution; Interval cstimator; Bayesian anlaysis; Markov

Chain Monte Carlo; WinBUGS; Dirichlet distribution; Bootstrap Interval

1 Introduction

The concept of group-testing originated with Dorfman (1943} in the context of identifying all
syphilitic men by Wasserman-type blood testing. Instead of testing units (bloods) individually,
observations are made on groups of units amalgamated together with group size s > 1. In most
applications, the group response is binary, classified as either non-infected or infected. A group
being non-infected is taken to mean no infected unit in the group, while a group testing defective is
taken to mean that at least one of the units is infected. Group testing may be used simply to obtain
an estimate of the proportion of infected units in a given population (the estimation problem) or

to exhaustively identify all infected members in the population (the classification problem).

The first recorded application of Group testing is screening bdraftees for syphilis during World
War II {See the monograph by Du and Hwang (2000)). Modern applications of Group testing are
made to many important areas such as quality control for industrial production systems (Sobel and
Groll, 1959; Li, 1962, Hwang, 1984, Bar-Lev et al., 1990), transmission of viruses by vectors (Walter
et al., 1980; Swallow, 1985), fisheries (Worlund and Taylor, 1983), communication networks (Wolf,
1985), plant disease assessment (Rodoni et al., 1994; Hepworth, 1996; Hughes and Gottwald, 1998;
Hepworth, 2004), genetics (Chick, 1996; Uhl et al.,2001), DNA library screening (Marcula, 1999a,
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b), drug discovery (Xie et al., 2001; Zhu et al., 2001), distributed data system (Hwang and Zang,
2002), and DNA Microarray design (Schliep et al. 2003). In molecular biology, group testing has
been applied to the problem of screening DNA clone libraries sequence tagged sites to aid in the
construction of physical maps (Baillot, et al., 1991; Bruno, et al., 1995; Dogget, et al., 1995). In
public-health studies, not only does group testing reduce the cost of testing, but it also preserves
individual anonymity {Gastwirth and Hammick, 1989; Tu, et al. 1994, 1995). Applications to HIV
screening are given, among others, by Emmanuel et al. {1988), Cahoon-Young et al. (1989), Behets
et al. (1990), Hammick and Gastwirth (1994), Litvak et al. (1994), Tu et al. {1995), Wein and
Zenios (1996), Gupta and Malina (1999), and Xie (2001).

Hung and Swallow (2000) considered group testing problems wherein the probability of response
is a function of one or more covariates. In general for a single covariate T with k > 2 levels,
let p1,p2, -+, pr correspond to the probabilities that individuals at each of k levels possess the
characteristic. To extend the idea to situations involving other types of restriction such as umbrella
orderings or antitonic constraints, Tebbs and Swallow (2003) presented an isotonic group testing
when the probability of response is increasing across the levels of an observed covariate. The group
testing suggested by Tebbs and Swallow (2003) has an isonotonic constraint p1 < p2 < -+ < pg.
In general, it is hard to apply the isotonic group testing to the medical researches which do not
keep the ordering constraint because of several complicated biological factors. So authors had a
motivation to find the literature review of the multinomial group testing, which is more realistic
method compared to a binary group testing. Kumar (1970a) proposed multinomial combinatoral
group testing procedure which considers the classification of each of a finite number N of given units
into one of the k disjoint categories. Also, Kumar (1970b, 1972) considered the problem of trinomial
combinatorial group testing which is concerned with classification each of N given units into one of
three disjoint categoires such as good, mediocre, and defective. Hwang and Xu (1987) considered
Group testing to identify one defective and one mediocre item which consider that a set N of n
items consists of n — 2 good items and two questionable items M and D such that M is mediore
and D is defective. Hwang and Yao (1989) considered cutoff point and monotonicity properties
for multinomial combinatorial group testing. Under the assumption that a probability distribution
on the number of defective items exists, multinomial probability group testing models have been

considered by Hughes-Oliver and Rosenberger (2000) and, in the context of drug discovery, by Xie
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et al. (2001) and Zhu et al. (2001) and , in the context of genetic, by Pfeiffer (2002). Recently, Bar-
Lev et al. (2005) proposed multinomial probability group testing which assume that every of the
pooled items has none or some of k& attributes, one of them causing contamination. The objective
of the Bar-Lev et al. (2005) model is to choose an optimal group size for pooled screening so as
to collect prespecified numbers of items of the various types with minimum testing expenditures.

Estimation of proportions in the Bar-Lev et al. (2005) model is derived by MLE approach.

In the group testing literature, estimating the interested proportion, p, via maximum likelihood
has been the traditional approach and has been studied extensively (Thompson, 1962; Swallow,
1985, 1987; Chen and Swallow, 1990, 1995; Hughes-Oliver and Swallow, 1994; Hung and Swallow,
1999). However, since group testing is often most effective when the prevalence p is suspected
to be small, some authors have considered implementing this prior knowledge with a Bayesian
approach. Chaubey and Li (1995) use a two-parameter Beta prior distribution for p and derive
the Bayes estimator using a squared error loss function. Chick (1996) also uses a two-parameter
eta prior for p and considers the use of unequal group sizes. Chick (1996) clearly mentioned the
advantage of Bayesian method compared to the classical approach. The advantage is as follows;
"Certain proportions are more likely than others for many experiment. The classical statistical
approach does not permit the belief that some proportions are more likely than others. A bayesian
probability approach is therefore recommended when such information is available. The bayesian
approach also allows for more flexibility than MLE approach for describing such information.”
However, neither Chaubey and Li (1995) nor Chick (1996) addresses Bayesian estimation of the

papameter in the context of multinomial group testing design.

In this article, we consider the Bayesian approach to multinomial distributed responses and
explore some potential advantages of the Bayesian multinomial group testing model. In addition,
we propose a approximate Bayes estimates using Monte Carlo Markov Chain (MCMC) employed

by WinBUGS and consider interval estimates using the bootstrap.

The purpose of this article is to propose several methods for estimating of parameters of multino-
mial group testing model. To illustrate our findings we have applied the proposed method to Cali-
fornia HIV counseling and testing study data which has three categories such as HIV positive, HIV
inconclusive (currently not HIV positive but potentially HIV positive), and HIV negative.



The rest of the article is arranged as follows. Section 2 gives a short review of multinomial dis-
tribution and Dirichlet distribution and presents a maximum likelihood estimator in the Bar-Lev
(2005) multinomial group testing. In Section 3, we derive an exact Bayesian multinomial group
tesing model and its exact confidence interval, and compare MLE and Bayes estimator, on frequen-
tist grounds, in terms of mean-squared error (i.e., risk). In Section 4, we consider interval estimates
using the bootstrap and propose a approximate Bayes estimates using Monte Carlo Markov Chain
(MCMC), and the proposed methods are illustrated using a real HIV dataset throughout California,

2000. In Section 5, we conclude with a brief summary discussion.

2 Multinomial Group testing

When data are more complex and have more than two categories, we need a new technique to
give alternative solutions for some of these specific problems. In multinomial group testing model,
there are more than two possibilities which is more applicable in real application. We present
in detail the general setting of the Bayesian multinomial group testing models. The multinomial
distribution is a generalization of the binomial for the situation in which each trial results in one
and only one of several categories, as opposed to just two, as in the case of the binomial experiment.
We discuss briefly below multinomial distribution and Dirichlet distribution. Let Y = (¥, ...,Y%),
where Y; is the number of k independent trials that result in category 4,7 = 1,..., k. The standard

multinomial model can be written as

n! .

Y

% " ™,
Hi:l Yit 5=

where m;, called model probability, is the probability that a given trial results in category 4,7 =

Y ={N,Ys,..., Y1} ~ Multinomial(n, w1, 72, ..., 1) =

1,...,k and Zle y; = n. The observed number of cases that gives response ¢ to the dependent

variable is denoted y; and k denotes the number of possible response. The parameter space is

H={7r:7'ri20,1’:1,...,k;2f:17ri=1}.

A prior distribution f() is said to be conjugated to a likelihood L(z|r), if the posterior distri-
bution g(x|z) has the same parameter form as the prior distribution. Conjugate prior has following
properties; first, it allows arbitrary numbers of updates to be made to the distribution as more

data becomes available, second, it has computational flexibility. The probability density of Dirich-
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let distribution (Aitchison, 1986) for variables IT = (7, ..., 7)) with parameter & = (ay,...,0x) is

defined by

k
r
f(H‘ 51) (Zz—l al P 1-111_[ (1)
Hi:lr(al i=1
where my,...,7m > 0; Ele m; =1 and ay,...,0, > 0. In the Dirichlet distribution, each x; follows

a Beta(w;, o — o;), where a = Ef=1 a; distribution. In order to fully specify the Bayesian model,
Dirichlet priors are assigned to the m;,i = 1,2,...,n, i.e., Il ~ Dirichlet(on,az,...,a,), where
a;,1 = 1,2,...,n are the hyperparameter of the prior distribution. It is straight forward to show

that the joint posterior distribution is also Dirichlet distribution of the form
7 ~" Dirichlety (a1 + v1, - . ., ok + Yk), (2)

where Dirichletg(c, ..., o) denotes on a k — 1 dimensional simplex with parameter (a,...,o).
Therefore, the posterior distribution of the m; given an observation of multinomially distributed

Yi,...,Y} is also Dirichlet distribution since

k
P(rlY) o [[m{it¥
=1

The Dirichlet distribution is the conjugate prior of the parameters of the multinomial distribution.
Dirichlet distribution is a multivariate generalization of the Beta distribution. Recently, Bar-Lev
(2005) proposed multinomial group testing model which deals with more than two categoriy re-
sponses. Bar-Lev (2005) focus on choosing an optimal group size for pooled screening so as to collect
prespecified numbers of items of the various types with minimum testing expenditures and derived
exact results for the underlying distributions of the stopping times. In their work, they considered
the k attributes v1,--- ,vx and fix the group size s. For a given group, let (Zj1,---,Z;;) be the

random vector of '1’s and ’0’s defined by
Ziy =1 if the jth item in the group possesses attribute v,

and Zj, = 0 if it does not. Let
(Z]’U) 1,..,8v=1,..k

be the (s x k)-matrix of the Z;,. For 1 < h < k and distinct indices 1 < z1,... < z < k, they

denote by By, ...z, the event that the attributes vy, ..., vy, are present in at least one item of the
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given group while the other attributes are missing in all s items. Let B be event that none of the
attributes is present in the group. Bar-Lev (2005) expressed the probabilities of these events in

terms of the distribution of Z. Therefore,

8§ $
P(Byy,.zy) = P() Zjz, 21 forv=1,..,h,  Zjz =0for z & {z1,...,zs})
Jj=1 J=1

=Y P(Z=a)

where the sum is over all matrices a = (aj¢)j=1, . s=1,.,k Satisfying
a’j$ € {Oa 1}

Zaj’”“ >1forv=1,..,k
ajz =0, z ¢ {z1,...,zn}.
Similarly,
P(B) = P(Z;j, =0 for all j,v).

The presence of attribute v contaminates a group combining all types containing v into one;

therefore they distinguish between the [ = 25~ + 1 types

Bey g, 1<h<k-1, 1<z <..<zp<k-1 (3)

k—1
B and | U By, 2y ke (4)

h=0 1<z <. .. <zp<k-1

The types in (3) are the clean ones containing at least one of the attributes vy, ..., vx_1; B is purely
clean and the second type in (4) is the contaminated one. Number the types from 1 to [ and call

the types B() ..., BY, where B = B and B® is the contaminated type.

Every item can have any combination of attributes independently of the other items. Usually,
the population prevalence rate of contaminated items is much smaller than those of the clean
types taken together. The occurrence of the k attributes vy, ...,v; in an item can be assumed to be

independent. In this paper, we denote by p; the probability that an item possesses attribute i.

By the independence of the rows of Z it follows that

P(B)=P(Zy, =0, v=1,..,k)

-137 -



In particular, if the attributes are independent,
k
P®)=[[(1-p).
v=1

The probabilities in (3) are difficult to compute in general. However, in the case of independent

attributes it is easily seen that

k
P(Bu,.w)= ] Q- JJ1-p3)

vg{21,...n} i=1

Finally,

PBO) = P(> Zy > 1)(1 - py)*.
j=1

Under the multinomial group testing of Bar-Lev et al (2005), m; is the case when there is no element
for attribute present, 7y is the case when there is an element for attribute 1 but not for attribute 2
present, 73 is the case when there is an element for attribute 2 present. Assume that the attributes
are independently distributed in the population. Then in a group test of size s the probabilities of

the three different categories are

(1-p1)°(1 —p)°
(1=p2)’1 = (1 = pm)’]

w3 = 1—(1-p2)°.

™

2

By using invariant property of MLE, the ML estimates of p;, ps, pp are given by

o (1) i ()

1-73 ny + ng

_ - niy + nag 1/s
= 1-(-R) =1 ()
P2 ( 3) n1 +ng +ns3/.

ny + n2 )1/3 ( 71 )l/s .
ny +ng +ng ny + ng ’

Po = l—ﬁl—ﬁ2=(

where 71 = n1/n, T2 = na/n, and T3 = nz/n. For example, assuming no testing errors, N3, has a
binomial distribution with parameter n and 1 — (1 — p2)*. For interval estimation, the confidence
intervals to the group testing model is given by

Var(ps)

P2t 242 —
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where

Var(py) = L2 (=P 020

b

and z,/7 denotes the upper «/2 percentile of the standard normal distribution.

3 Exact Bayesain multinomial group testing

The objective of Bayesian modeling is to obtain a conditional distribution of the unknown pa-
rameters of the model given the model structure, prior information about unknown parameters and
observed data. In group testing problem, we are interested in improving procedures for estimating
the proportion p. Bayesian approach provide a formal way of making statistical inference on pa-
rameters of interest based on observed data and prior information. In the Bayesian approach, the

uncertainty about the parameter values given the observed data and prior information are expressed

in terms of probabilities.

Bayesian methods have not been extensively used in group testing problem. Moreover, so far
there is no published paper which deal with detailed full Bayesian multinomial group testing model.

The ultimate goal of this study is to improve procedure for estimating the parameters in group

testing model.

Now we introduce the Bayesian multinomial group testing estimation problem which is more
applicable in practice. We show that Bayesian approach provides a more reliable proportion esti-
mator than that of classical approach in group testing problem. Finally, we show that the estimator

by the proposed approach is consistently preferred over the classical estimator in real application

in group testing problem.

3.1 Computing the Exact Joint Posterior Distribution

We denote by p; the probability that an subject/item possesses attribute/category i and Zf:l D =
1. We assume that the attributes are fixed and #¢d Bernoulli(p;) random variables, 0 < p; < 1 and a
common group size s. Note that since Zle p; = 1, there are actually only two unknown parameters.

‘We assume that the response vector (Y;1, Yio,...,Y;) for subject (i.e., item or individual) ¢ with
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i = 1,2,...,n and for attribute/category j with j = 1,2,...,k consisting of zero and one, in
addition to that we consider vectors having at least one non zero entry. To formally introduce group

testing problem, we need to fix the group size s. Therefore N = (Ny, ..., Ni) has a multinomial

distribution with parameters n and II = (m,..., 7). So it follows that based on the observed
values 7 = (ny,...,n), the likelihood function of N given that Il = (m,...,m) is
n! k
fN|H(ﬁ'|%) = % Hﬂ-?iy

Ilimimi i
In this study, we will formally introduce the Bayesian method in a general framework but we will
focus on a trinomial group testing model which is concerned with classification each of N given
units into one of three disjoint categoires. Note that in many cases, it is not easy to calculate the
desired joint posterior distribution using analytical method. In our work, we analytically derived

the joint and marginal posterior distribution for multinomial group testing model.

The number of defective groups, N = (N1, No, N3), has a multinomial distribution with para-
meters 2 = (ny,na,n3) and T = (my, 7o, 73). Thus, the likelihood for trinomial distribution of group

testing problem can be expressed as

N n!
len(nITr) n1!n2!(n — Ny — nz)!

)n—m—nz

where 7, + 73 +m3 = 1 and » = n; + ng + n3. In order to complete the model specification from
a Bayesian framework, we specify a joint prior distribution for all parameter of the model. In this
work, we adopted Dirichlet distribution as a prior information. There are several advantages of
incorporating the Dirichlet distribution in multinomial set up. First, Dirichlet distribution is a con-
jugate family of multinomial distribution. Second, Dirichlet prior & = (e, ..., o) is a appropriate
for small p, since for large value of a, the majority of the probability distribution of the random
variable is closed to zero. Third, estimates derived using Dirichlet prior are consistent, and can be

computed efficiently.

The Dirichelt prior, the probability distribution function for §, is given by

(=AY — F(a) a1—1__ag—-1 a—a;—az—1
faPl®) = TS T e —a ™ ™ (T M) ’

for values of a = 3°5_, a;.
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The joint distribution of N and #, conditioned on &, is given by

e p(nfla) = fy:(IF) x fz(7la)
n! y T{a)
nilnpl(n —ny —ng)!  T{a)T(a)T{a— a1 — a2)

ni+a1—1_na+az—1
X m T2 (

T — ﬂ_z)n—nl—nz-i-a—al—az—l’

Using transformation m; = (1 — p1)°(1 —p2)*, m = (1 ~p2)°[1 — (1 —p1)®],and 1 —my —mp =
[1—(1—p2)*] so that IT = (my, 79, 73), the joint distribution of N and P, conditioned on &, is given
by

n! I'(a)

fup(®pl@) = mnal(n — 1 —ng)! « Do) (ea)l (@ — a1 — o)
[1 _ (1 _ pl)s](nﬂ—az—-l)(l _ pz)s(n1+n2+a1+a2—2)[1 _ (1 _ p2)8](n—n1—n2+a—a1—a2—l) . \Jl ,

(1 - pl)s(n1+oz1—1)

X

for 0 < p1, p2 < 1 and the Jacobian is |J| = |32(1 —p)¥H1 - p2)2s_1|. The marginal distribution
of N is given by

1
In(ila) = /0 f.p (7 71)dp

n! T{a) 9

T nilng!(n —ng — ng)! X D{o)T(a2) e — o — a2) xS

(5)
! 1
X A (1 _pl)s(nﬁ—m—;){l -(1- pl)s](n2+a2-1)dpl

1
x / (1 . pz)s(n1+n2+al+az—%)[1 _ (1 _ p2)s](n-nl—n2+a—a1—a2—1)dp2
0

n! I'a)
nilngl(n — ny — ng)! % T'oq ) T{e2)(a — a1 — a2)
y I(ni +a1)l(ng + a)l{n—ny ~ng+a—ay —az)
I'(n+a) ’

which is the product of gamma function.
The joint posterior distribution is given by

Inp (R, pla)

fn(nla)

fen(BI7, &)
$’T(n +a)

T(ny +a1)T(ne + a2)T(n —ny —ng + o — a1 — az)

X(1 = p) e — (1 py)?|ratea)

X(l _ pz)s(n1+nz+a1+ag—%)[1 _ (1 . p2)S](n—n1—n2+a—a1—a2—1)‘ (6)
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The joint posterior distribution is a product of the joint prior distribution and the likelihood
function. We obtain analytically the marginal posterior distribution by integration over some para-
meters. This joint posterior distribution is all that is needed to make inference about the unknown

parameters.

The full conditional distributions are derived from the joint posterior distribution. The final full

conditional distribution for proportion p; is given by

' fvp(R, &)
o fn(@la)

frn(p1|f, &)
sT(n+a)

F(n1 -+ al)I‘(n2 + ag)I‘(n —ny—No+0— Q1 — 012)

X(1= 1)L - (1 = py)Jrarerd

1
x / (1 __pz)s(n1+n2+a1+ag—%)[1 _ (1 _ pz)s]("_m_"2+a_al_a2_l)dp2
0
sT'(n1 +ny + a1 + az)
I'(ng + a1)T(n2 + a2)
x(1— pl)’("l"’"‘“%)[l — (1 = py)?)(netea—D), (7)

and, similarly, ps is given by

1 fN,P(’ﬁ,ﬁld)
o fn(R|&)

Fey v (p2lfi, &)

$T'(n+a)
C(ny + o) T(ng + a)T(n—ny —ng + a — a1 — ag)

1
X/ (1- pl)s(n1+a1—%)[1 -(1- pl)s](n2+a2—l)dpl
0

X(l _ p2)s(n1+n2+a1+oz2—%)[1 _ (1 _ pz)s](n—nl—n2+a—a1—a2—1)

_ sI'(n+ a)
T Tmi+natar+al(n-—n —ng+a—a; —as)
X(]. _ p2)s(n1+n2+a1+a2-—%)[1 _ (1 _ p2)s](n—n1—n2+a-a1—02—1) (8)

With fp,n(pi|#i, &) and a given loss function, say, L(p;, a), (where a denotes the action taken), the

Bayes estimate of p; with respect to L(p;,a) is the value of g that minimizes

1
E[L(F;, a)|n, d] =/0 L{p;, a) fp, N (pil7, &)dp;,

for ¢ = 1,2. For the remainder of this section, and for all comparisons in Section 5, only squared-

error loss is considered; i.e., L(p;,a) = (p; — a)?, so that the Bayes estimate of p; is the mean of
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posterior fp,n(pi|7t, &) . A closed-form expression for pp,, the mean of the posterior, is given by

1
pB, = /Oplfplw(mlﬁ,&)dpl

I'(ng +ny + g + ) /1 1 a1
1— s(ni+on=3)[1 _ (] — pq)¥](Rete2—1)g
T(ny + 01)T{(nz + az2) Jo pi(l=py) 1 --p) P1

Beta(ni + oq + %,ng + ag)
Beta(n; + oy, n2 + az)

where

Beta(a, 8) = /01 * Y1 —z)f ldz = ?((Z)-I;(g))

Similarly, a closed-form expression for pp,, the mean of the posterior, is given by

1
PB, = /Opzfpzw(mlfl,d)dm

sT(n+ )
T(ny+ne+o1+a)l(n—ny—ng+a—ag —ag)

1
x / (1 — pQ)S(n1+nz+a1+a2—§)[1 -(1- pz)s]("_"l_"2+°‘_°‘1_a2_1)dpg
0

Beta(n; + ng + ay +a2+%,n—n1—n2+a—a1—a2)
Beta(ny +n2 + a1 +ag,n—n1 —n2 +a - a1 — az)

3.2 Credible Intervals

In the group testing literature, methods for confidence intervals construction have not been
studied extensively. Thompson (1962) provide an approximate confidence intervals for the pop-
ulation proportion of viruliferous insects, based on the exact variance and Student-t approach.
Bhattacharyya, Karandinos and DeFoliart (1979) develop a method for a confidence interval using
the asymptotic normality assumption. The predominant strategy is to use approximate Wald-type
confidence intervals, based on the normal distribution, using the asymptotic variance of pu,, for

i =1, 2. Straightforward calculations show this interval is given by

M, & Za/2\/{1 = (1—pm,)*}(1 — P, )33 /ns?,
where z,/, denotes the upper /2 percentile of the standard normal distribution.

By constructing the exact posterior distribution, we can calculate a 100(1—a)% credible intervals

for p, as follows
Up, o
I n(piln, &)dp; = 1 — «,

Py
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where 0 < L, < Up, < 1 for i = 1,2. We denote credible interval by (Ly,, Up,), in practice, Ly,
and Up, may be determined using an equal-tail credible interval (95% equal-tail credible interval,
i.e., 2.5 % and 97.5% posterior percentiles) or highest posterior density (HPD) interval method. In
this study, we can find a nice closed-form expression for the equal-tail credible interval. The lower

bound (LB) of p; may find by solving following equation

L, o
/0 frn(m|7, &)dp:

_ /Lﬂl s'(ny + ng + o + o)
o T[(ni+a)l(ng + o)

N Q

x (1= pr)"M¥er=D[L — (1 ~ py)*|(n2¥e2=Dpy

Then using the u; substitution of u; =1 — (1 — p1)*® produces

— gy )(miter-1) =2
I'(n2 + a2)T'(ny + al)ul (1-wm) du 2

/1‘(1‘LP1)A D(ni +n2+ a1+ @2) (ng+az—1) a

0

Thus, 1—-(1~Ly, )° is Beta(§;nz2+a2, ny+a1), where Beta(v; a, b) denotes the v quantile of the usual
two-parameter Beta distribution. It follows that L, = 1 — {1 — [Beta($;n2 + ag,m + a)jt/e}.
Similarly, Up, =1 ~ {1 — [Beta(l — §;n2 4+ ag,m1 + al)]l/s}. Similarly, the lower bound for pg, is

found by solving following equation

L, o
/O Fryn{p2lfi, &)dpo

_ /L”2 sT(n + a)
0 F(n1+n2+a1+a2)1‘(n—n1—n2+a—a1—a2)
X(l _ p2)s(n1+n2+m+az—%)[1 _ (1 _ pz)s](n—nl—ngﬂx—al—az—l)dp2

o
2

Then using the ug substitution of us =1 — (1 — p2)® produces

/1_(1_1’7’2)“ Fin+a)
0

F(n—n1—n2+a—a1—ag)l"(n1+n2+a1+a2)
07

Xugn—nl——nz-i‘a—al—az—l)(l _ uz)("1+"2+a1+°‘2_1)d'u,2 -

Thus, 1 — (1 = Ly,)* is Beta(§;n — n1 —n2 + a — a; — az,n1 + nz + aq + az). It follows that
Ly, =1~ [Beta(§;n—my—ne+a—o1 —ag,ny +ng+ o + az)]'/¢. Similarly, Up, = 1— [Beta(l —
gim—m-—ng+a—ar—azn +n+ o +012)]1/3-

Note that confidence intervals based on the MLE and credible sets based on fp, i (p;i|#i, &) have
different interpretations. In Section 4, we will compare 95% approximate Wald-type confidence in-
tervals of the maximum likelihood estimators, Py, and credible intervals of exact Bayes estimators,

PB,, approximate Bayes estimators, P, and Bootstrap estimators pr,, respectively.
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Figure 1: Top panel - MSE of Du,, D, when group sizes s =5 and s = 10, p2 ranges from 0 to 1,
and n = 100; middle panel - MSE of pu,, P, when group sizes s =5 and s = 10, py ranges from

0 to 1, and n = 375; bottom panel - MSE of Dum,, P, when s =5 and s = 10, pa ranges from 0 to
1, and n = 500

3.3 Comparison of Point Estimates

In this subsection, we are investigating two different estimators, exact Bayes estimators g, and
maximum likelihood estimators, Tyy,, in order to assess the impact due to prior information. The
exact Bayes estimators are compared here with the MLE using mean square error (MSE). We do
this on frequentist terms and thus do not consider the loss function in the comparison. For a fixed
pi, the mean square errors of Ty, and 7g,are given by

n

MSEG) = Y(u, ~ 5 x ()11 - (11—

=0
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and

MSE(ps;) Enip, [(B, — pi)?]

Z(ﬁBi - Pi)z X (2) [1-(1- pi)s]t(l - Pi)s(""),

t=0

The purpose of the numerical computation is to confirm that the Bayesian multinomial group
testing model is more efficient than ML approach in terms of MSE. The numerical results are

graphically displayed to facilitate interpretation.

In practice, it is unlikely that the experimenter will ever use the optimal group size, since its
value depends on the unknown p;. Thus, we examine the performance of our estimators when sub-
optimal values of s are used. In our work, we choose the most interested probability, pa, which is
a positive trait proportion in the HIV or other disease tests from Bar-Lev (2005) model setting.
Figure 1 displays plots of the 7p, and Ty, for values of 0 < pp < 1 and for fixed s. We consider six
cases: (1) » = 100 and s = 5, (ii) n = 100 and s = 10, (iii} n = 375 and s = 5, (iv) n = 375 and
s =10, (v) n =500 and s = 5, and (vi) n = 500 and s = 10. For the non-informative priors, when
(i) n = 100 and s = 5 and (ii) n = 100 and s = 10, the Bayes estimators outperform the maximum
likelihood estimators for 0 < p; < 0.7. When n = 375 and n = 500, the reduction in MSE realized
by using a Bayes procedure also diminishes; however, all estimators based on non-informative priors
still continue to have smaller MSE when 0 < = < 0.7. In light of LeCam’s (1958) results concerning
the convergence of posterior distributions to a normal distribution, one would expect that for larger
values of n, the reduction in MSE realized by the Bayes procedure would be even smaller than those

when n = 500.

Four cases in Figure 1 display that there are large reductions in MSE by using Bayesian multino-

mial group testing and 7', is more consistent than 7y, .

4 Interval Estimation

4.1 Interval estimation using Bootstrap

The confidence intervals discussed in Section 3.2 utilize the large-sample distribution of the MLE

pi, ¢ = 0,1,2. While this may provide a good approximation to the true sampling distribution
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of p; when a sample of size n is large, it may be a poor approximation when n is small (and
especially when p; and/or s is small). In the group testing procedure, much attention has been
given to the small-sample problem. The problem of finding the best estimator for small samples
is particularly intriguing. For small sample of size, the bootstrap resampling method may enhance
the estimation efficiency and coverage sufficiency of confidence intervals. The bootstrap method
introduced by Efron (1979) is a very general resampling procedure for estimating the distributions
of statistics based on independent observations. The bootstrap method is shown to be successful
in many situation, which is being accepted as an alternative to the asymptotic approach. The

bootstrap method is a computer-intensive techniques for investigating the properties of estimators

and for deriving estimates.

In light of this, we consider using the bootstrap to estimate the sampling distribution of p;. A
large number of resamples, say R, are taken from the original sample, and the statistic of interest
pi which we derived in Section 2 is calculated for each resample. The bootstrap distribution is
then formed from the R values of p;. Bootstrap confidence interval for a particular sample can be
readily observed from the nonparametric distribution of the means of its 1,000 bootstrap replicates
in our simulation work. For a two-sided 95 % bootstrap confidence interval, we select the values
that cut off the lower and upper 2.5 percentiles. In this work, we implement the percentile method

to estimate a confidence interval using Bootstrap sampling.

Efron and Tibshirani (1993) and Davison and Hinkley (1997) each summarize a variety of
bootstrap confidence interval procedures. For full descriptions of these and other procedures, the

reader is referred to the aforementioned references.

4.2 Application and MCMC

Current HIV screening tests are designed to detect antibodies to HIV. California publicly funded
HIV conseling and testing data were collected for 2000 using the HIV Counseling Information
System. Overall annual testing volume reported to the Office of AIDS (OA). There were 181,910
OA-funded tests and 25,095 tests funded by other non-OA sources. They reported HIV testing by
race, gender, age, geographic area and risk behavior category based on risk behavior information

provided at risk assessment and disclosure counseling sessions. Monthly testing volume ranged
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between 12,000 - 17,000 OA-funded tests per month. In this application, we only consider 181,910

OA-funded tests per month for multinomial group testing model.

The group testing model is often used when there is a rare trait among a large population
of size n. The proposed model is used to analyze the HIV data, making it the first application
of this multinomial group testing model to data. Although we have obtained the closed-form
joint posterior distribution in Section 3, we may use MCMC technique, introduced by Geman
and Geman (1984), Tanner and Wong (1987) and Gelfand and Smith (1990}, to sample from the
joint posterior distribution of parameters. Computationally, it is rather easy to implement the
model in WinBUGS (Bayesian inference Using Gibbs Sampling), a free software can be downloaded
from http://www.mrc-bsu.cam.ac.uk/bugs. The software uses Gibbs sampling with necessary
Metropolis-Hasting algorithm to obtain samples from the posterior distribution. As the model used
was quite complex and high dimensional, MCMC method were used to approximate the posterior
distributions. One important feature of Bayesian approach using MCMC is that while the method
achieves important computational economics by using WinBUGS, it does not have any impact on the

estimates of parameters.

The focus of this article is essentially on deriving of closed-form Bayes estimates of parameters
but we are also concerned with estimating approximate Bayes estimates using MCMC implemented
by WinBUGS. We want to show that two Bayesian approaches yield consistent estimates of the
parameters of interest. Bayesian approaches we present give a more flexible and reliable estimates
taking into prior information than classical estimates. In the framework of binomial group testing

data, some works have been done by Chaubey and Li (1995) and Chick (1996).

In particular, approximate Bayes approach over exact Bayes approach is very beneficial since
there is computationally flexibility using in-built software WinBUGS. Therefore, it is recommendable
to use the Bayesian multinomial group testing model since, in doing so, we obtain a reliable estimates

for rate trait proportion.

Using the WinBUGS, we obtain samples from the posterior distributions of the parameters. Af-
ter some preliminary studies, we run three parallel chains with dispersed starting values for each
parameter. From the consistent results of multiple chains and convergence tests, we conclude that

the chains have mixed well. In this paper, we have investigated the performance of the various ap-
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Table 1: Office of AIDS (OA)-funded HIV counseling and testing services by month throughout

California for testing year 2000

Month # of Positive  # of Negative  # of Inconclusive # of Total
181 (0.0125) 14321 (0.9858) 25 (0.0017) 14527
February 180 (0.0117) 15188 (0.9874) 14 (0.0009) 15382
March 214 (0.0126) 16738 (0.9863) 19 (0.0011) 16971
April 194 (0.0124) = 15372 (0.9862) 21 (0.0013) 15587
May 186 (0.0116) 15802 (0.9876) 13 (0.0008) 16001
June 240 (0.0146) 16141 (0.9826) 5 (0.0027) 16426
July 213 (0.0137) 15290 (0.9844) 9 (0.0019) 15532
August 200 (0.0125) 15733 (0.9852) 6 (0.0023) 15969
September 183 (0.0130) 13822 (0.9854) 22 (0.0016) 14027
October 181 (0.0115) 15477 (0.9866) 30 (0.0019) 15688
November 161 (0.0116) 13719 (0.9866) 25 (0.0018) 13905
December 134 (0.0113) 11748 (0.9876) 13 (0.0011) 11895
Total 2267 (0.0124) 179351 (0.9859) 292 (0.0016) 181910

proaches, ML approach, exact Bayes approach, approximate Bayes approach and bootstrap method
in terms of point and interval estimation (See Table 2). In Table 2, we use the abbreviations M, B, G
and R for ML estimate, exact Bayes estimate, approximate Baeys estimate and Bootstrap estimate,
respectively. The confidence intervals of Approximate bayes estimates in Table 2 are based on three

chains of 27,000 iterations each after a burn-in period of 3,000 iterations using the WinBUGS.

With non-informative prior, the difference observed in the length of the confidence intervals for
classical approach, bootstrap method and credible intervals for Bayesian approach are not much
different. But we find some interesting result in the month of June. The numbers of HIV positive
and HIV inconclusive persons during the month of June are higher than the numbers of HIV positive
and HIV inconclusive during other months. Most of cases in Table 2, we also notice that the length
of the confidence intervals using the bootstrap method is smaller than the ones of the confidence
intervals using the other methods. From the results of Table 2, when the number of infected people

are large, the bootstrap method in multinomial group testing procedure may be recommended.

The results in Table 2 also confirm that the exact Bayes approach and the approximate Bayes
approach using MCMC have the similar parameter estimates and credible intervals. Another com-
mon approach to Bayesian inference is to present an HPD (Highest Posterior Density Interval)

region for the parameters. Using MCMC method, we show the approximate Bayesian the equal-tail
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Figure 2: (a) Equal-tail 95% posterior credible interval (solid line) and the HPD interval (dashed
line) of the proportion of the number of positive for January, (b) Equal-tail 95% posterior credible
interval (solid line) and the HPD interval (dashed line) of of the proportion of the number of
inconclusive for January.

95% posterior credible intervals and the HPD by computing the 2.5 and 97.5 percentiles of the pos-
terior distribution of the parameters (Figure 2). In summary, although ML estimates for rare traits
have good asymptotic properties, we have some evidence that Bayesian approach and Bootstrap
approach provide more appropriate and reliable parameter estimates than the MLE for rate trait

proportions.

5 Discussion

Group testing is extensively used for treating dichotomous:data when the probability of being de-
fective is very small. In this article, we consider a multinomial group testing model having more
than two categories. We propose and compare four different alternatives to perform statistical infer-
ence for the multinomial group testing model parameter, especially rate traits; maximum likelihood

estimator, exact Bayes estimator, approximate Bayes estimator and Bootstrap estimator.

The multinomial models were allowed to adopt more specifications or categories in group testing
experiment design. In group testing problem, ML estimates may lie outside the boundary of the

parameter space or are typically more extreme (or can be zero) than the Bayes estimates for rare
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traits (Tebbs et al. (2003)). Here, in the context of multinomial group testing problem, we apply
Bayesian analysis to conveniently estimate parameters as well as precision. Figure 1 displays that
the exact Bayes estimates are reliable than ML estimates and have comparable efficiency in terms
of MSE. We also recommend the Bayesian approach to multinomial group testing for two following
reasons. First, we obtain a more reliable estimates for rare trait proportion in group testing problem
using Bayesian alalysis than classical approach. Second, Bayes estimates with non-informative prior
information provide a comparable efficiency to classical estimates for small sample sizes. We have
also introduced the bootstrap as a possible strategy in multinomial group testing. Bootstrap method

may be able to capture small lengths of the confidence intervals for small samples or large samples.

In binomial group testing, Chick (1996) proposes forming credible intervals using a Beta prior
distribution with hyperparameters chosen by the researcher. Recently, Tebbs et al. (2003) propose
a similar credible interval, but using a one-parameter Beta prior and an empirical Bayes approach.
Both intervals could be used provided the use of the chosen prior is justified. In the context of the
multinomial group testing, we have introduced four different confidence intervals using maximum
likelihood estimator, exact Bayes estimator, approximate Bayes estimator and Bootstrap estimator.
In addition, we have incoporated one of the popular statistical methods, MCMC using the WinBUGS
into the multinomail group testing model to find the approximate bayes estimates. The approximate
Bayes approach over exact Bayes approach is very beneficial since there is computationally flexibility

using in-built software WinBUGS.

It should be pointed out that the proposed methods for the multinomial group testing may
strengthen the group testing experimental design to minimize the expected number of tests and
reduce the costs. Our work advances the study of interval estimation procedures in various group-
testing applications such as environmental issues, medical screening experiments, and drug discovery

which require more than two categories.
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Table 2: 95% approzimate Wald-type confidence intervals of the maximum likelihood estimators
(7m) and credible intervals of exact Bayes estimators (7g), approrimate Bayes estimators (Tg) us-
ing MCMC with non-informative Dirichlet prior distributions (i.e., Dirichlet (1,1,1)) and bootstrap

confidence interval by percentile method (Tg), respectively

# of Positive

# of Inconclusive

January 181 25

™ (0.00214, 0.00284) (0.00021, 0.00048)
B (0.00217, 0.00290) (0.00024, 0.00051)
Fife] (0.00217, 0.00290) (0.00023, 0.00051)
R (0.00216,0.00298)  (0.00024,0.00052)
Feburary 180 14

™ (0.00201, 0.00270) (0.00010, 0.00028)
78 (0.00203, 0.00272) (0.00011, 0.00031)
fire] (0.00204, 0.00272) (0.00011, 0.00031)
R (0.00206, 0.00260) (0.00010, 0.00027)
March 214 19

™ (0.00220, 0.00288) (0.00012, 0.00032)
B (0.00222, 0.00290) (0.00015, 0.00035)
G (0.00222, 0.00290) (0.00014, 0.00035)
R (0.00222, 0.00286) (0.00013, 0.00033)
April 194 21

™ (0.00215, 0.00286) (0.00015, 0.00038)
7B (0.00217, 0.00288) (0.00018, 0.00042)
TG (0.00218, 0.00288) (0.00020, 0.00041)
TR (0.00222, 0.00289) (0.00016, 0.00039)
May 186 13

™ (0.00200, 0.00267) (0.00007, 0.00025)
7B (0.00202, 0.00270) (0.00010, 0.00028)
Fie (0.00203, 0.00270) (0.00010, 0.00028)
TR (0.00203, 0.00268) (0.00010, 0.00021)
June 240 45

™ (0.00258, 0.00332) (0.00039, 0.00071)
7B (0.00260, 0.00333) (0.00042, 0.00074)
e (0.00260, 0.00335) (0.00041, 0.00074)
R (0.00263, 0.00334) (0.00045, 0.00066)
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July
™
TB
fge
TR

213

(0.00239, 0.00313)
(0.00241, 0.00315)
(0.00242, 0.00316)
(0.00257, 0.00308)

29
(0.00024, 0.00051)
{0.00026, 0.00054)
(0.00024, 0.00054)
(0.00029, 0.00049)

August
™
7B
e
R

200
(0.00217, 0.00287)
(0.00219, 0.00289)
(0.00220, 0.00289)
(0.00226, 0.00269)

36
(0.00030, 0.00060)
(0.00033, 0.00063)
(0.00033, 0.00063)
(0.00033, 0.00067)

September
™
7B
TG
TR

183
(0.00225, 0.00301)
{0.00227, 0.00303)
(0.00228, 0.00304)
(0.00219, 0.00278)

22

(0.00018, 0.00045)
(0.00021, 0.00048)
(0.00023, 0.00048)
(0.00021, 0.00045)

October
™
7B
g
TR

181
(0.00199, 0.00266)
(0.00200, 0.00268)
(0.00201, 0.00269)
(0.00196, 0.00278)

30
(0.00025, 0.00052)
(0.00027, 0.00055)
(0.00027, 0.00055)
(0.00027, 0.00050)

November
™™
TB
e
TR

161
(0.00197, 0.00269)
(0.00199, 0.00271)
(0.00199, 0.00272)
(0.00211, 0.00262)

25

(0.00022, 0.00050)
(0.00025, 0.00054)
(0.00026, 0.00053)
(0.00026, 0.00047)

December
™
7B
fuee’
TR

134
(0.00188, 0.00265)
(0.00191, 0.00268)
(0.00192, 0.00269)
(0.00187, 0.00267)

13

(0.00010, 0.00034)
(0.00013, 0.00038)
(0.00013, 0.00038)
(0.00007, 0.00031)
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