• Title/Summary/Keyword: approach method

Search Result 17,204, Processing Time 0.033 seconds

Modeling Approaches for Dynamic Robust Design Experiment

  • Bae, Suk-Joo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.373-376
    • /
    • 2006
  • In general, there are three kinds of methods in analyzing dynamic robust design experiment: loss model approach, response function approach, and response model approach. In this talk, we review the three modeling approaches in terms of several criteria in comparison. This talk also generalizes the response model approach based on a generalized linear model. We develop a generalized two-step optimization procedure to substantially reduce the process variance by dampening the effect of both explicit and hidden noise variables. The proposed method provides more reliable results through iterative modeling of the residuals from the fitted response model. The method is compared with three existing approaches in practical examples.

  • PDF

A novel approximate solution for nonlinear problems of vibratory systems

  • Edalati, Seyyed A.;Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1039-1049
    • /
    • 2016
  • In this research, an approximate analytical solution has been presented for nonlinear problems of vibratory systems in mechanical engineering. The new method is called Variational Approach (VA) which is applied in two different high nonlinear cases. It has been shown that the presented approach leads us to an accurate approximate analytical solution. The results of variational approach are compared with numerical solutions. The full procedure of the numerical solution is also presented. The results are shown that the variatioanl approach can be an efficient and practical mathematical tool in field of nonlinear vibration.

An accurate novel method for solving nonlinear mechanical systems

  • Bayat, Mahdi;Pakar, Iman;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • This paper attempts to investigate the nonlinear dynamic analysis of strong nonlinear problems by proposing a new analytical method called Hamiltonian Approach (HA). Two different cases are studied to show the accuracy and efficiency of the method. This approach prepares us to obtain the nonlinear frequency of the nonlinear systems with the first order of the solution with a high accuracy. Finally, to verify the results we present some comparisons between the results of Hamiltonian approach and numerical solutions using Runge-Kutta's [RK] algorithm. This approach has a powerful concept and the high accuracy, so it can be apply to any conservative nonlinear problems without any limitations.

Reliability-Based Design Optimization Using Kriging Metamodel with Sequential Sampling Technique (순차적 샘플링과 크리깅 메타모델을 이용한 신뢰도 기반 최적설계)

  • Choi, Kyu-Seon;Lee, Gab-Seong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1464-1470
    • /
    • 2009
  • RBDO approach based on a sampling method with the Kriging metamodel and Constraint Boundary Sampling (CBS), which is sequential sampling method to generate metamodels is proposed. The major advantage of the proposed RBDO approach is that it does not require Most Probable failure Point (MPP) which is essential for First-Order Reliability Method (FORM)-based RBDO approach. The Monte Carlo Sampling (MCS), most well-known method of the sampling methods for the reliability analysis is used to assess the reliability of constraints. In addition, a Cumulative Distribution Function (CDF) of the constraints is approximated using Moving Least Square (MLS) method from empirical distribution function. It is possible to acquire a probability of failure and its analytic sensitivities by using an approximate function of the CDF for the constraints. Moreover, a concept of inactive design is adapted to improve a numerical efficiency of the proposed approach. Computational accuracy and efficiency of the proposed RBDO approach are demonstrated by numerical and engineering problems.

Design of Automobile Exhaust System using a Top-Down Approach Design Methodology (상하향식 설계법을 이용한 자동차 배기시스템의 설계)

  • 고병갑;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.13-27
    • /
    • 1997
  • In the modern design technology, a component should be designed to fit into the overall system performance. A design methodology is developed to expedite the mechan- ical design of complex mechanical systems, The relation between the system design and component design is defined by a top-down approach and the results from the system design are utilized in the component design process. As a design example, an automobile exhaust system is selected for the system design and a bellows is chosen for a component design. Design methodology based on the top-down approach consists of five steps; (1) Analysis of service load, (2) Development of a lumped parameter, (3) Completion of the system design, (4) Selection of the component topology, (5) Completion of the component design, A method using a equivalent matrix is developed in order to determine unknown external forces in linear structural analyses. The bellows is also analyzed by the finite element method using a conical frustum shell element. Various experiments are performed to verify the developed theories. The top-down desi- gn approach is demonstrated by a design case using structural and shape optimization technology. Since the method is relatively simple and easy compared to other methods, it can be applied to the general design where system and component designs are involves simultaneously.

  • PDF

Multi-level approach for parametric roll analysis

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-64
    • /
    • 2011
  • The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude-Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

Reliability-Based Topology Optimization Using Single-Loop Single-Vector Approach (단일루프 단일벡터 방법을 이용한 신뢰성기반 위상최적설계)

  • Bang Seung-Hyun;Min Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.889-896
    • /
    • 2006
  • The concept of reliability has been applied to the topology optimization based on a reliability index approach or a performance measure approach. Since these approaches, called double-loop single vector approach, require the nested optimization problem to obtain the most probable point in the probabilistic design domain, the time for the entire process makes the practical use infeasible. In this work, new reliability-based topology optimization method is proposed by utilizing single-loop single-vector approach, which approximates searching the most probable point analytically, to reduce the time cost. The results of design examples show that the proposed method provides efficiency curtailing the time for the optimization process and accuracy satisfying the specified reliability.

Comparing Bayesian model selection with a frequentist approach using iterative method of smoothing residuals

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan E.;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2021
  • We have developed a frequentist approach for model selection which determines consistency of a cosmological model and the data using the distribution of likelihoods from the iterative smoothing method. Using this approach, we have shown how confidently we can distinguish different models without comparison with one another. In this current work, we compare our approach with conventional Bayesian approach based on estimation of Bayesian evidence using nested sampling for the purpose of model selection. We use simulated future Roman (formerly WFIRST)-like type Ia supernovae data in our analysis. We discuss limits of the Bayesian approach for model selection and display how our proposed frequentist approach, if implemented appropriately, can perform better in falsification of individual models.

  • PDF

A Level II reliability approach to rock slope stability (암반사면 안정성에 대한 Level II 신뢰성 해석 연구)

  • Park, Hyuck-Jin;Kim, Jong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.319-326
    • /
    • 2004
  • Uncertainty is inevitably involved in rock slope engineering since the rock masses are formed by natural process and subsequently the geotechnical characteristics of rock masses cannot be exactly obtained. Therefore the reliability analysis method has been suggested to deal properly with uncertainty. The reliability analysis method can be divided into level I, II and III on the basis of the approach for consideration of random variable and probability density function of reliability function. The level II approach, which is focused in this study, assumes the probability density function of random variables as normal distribution and evaluates the probability of failure with statistical moments such as mean and standard deviation. This method has the advantage that can be used the problem which the Monte Carlo simulation approach cannot be applied since the complete information on the random variables are not available. In this study, the analysis results of level II reliability approach compared with the analysis results of level III approach to verify the appropriateness of the level II approach. In addition, the results are compared with the results of the deterministic analysis.

  • PDF

A Translation Method of Ladder Diagram for High-Speed Programmable Logic Controller (고속 프로그램형 논리 제어기 구현을 위한 래더 다이어그램 해석 방법)

  • 김형석;장래혁;권욱현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 1999
  • This paper proposes a translation approach for PLCs (Programmable logic controllers) converting ladder diagrams directly to native codes, and describes detailed steps of the method followed by performance evaluation. A general-purpose DSP (Digital signal processor) based implementation validates the approach as well. A benchmark test shows that the Proposed translation framework fairly speeds up execution in comparison with the existing interpretation approach.

  • PDF