Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.
터널발파시 기존 연구와 시공사례를 통해 전자발파 공법이 기존 발파공법보다 효과적으로 발파진동 저감효과가 탁월한 것으로 보고되고 있다. 그러나 전자뇌관의 가격이 높아 보안물건이 근접한 발파 현장에서만 일부 활용되는 실정이다. 이에 본 연구는 전자뇌관 적용 비율에 따른 진동저감 효과를 연구하기 위하여 전자뇌관과 비전기뇌관의 비율을 조절하여 터널발파 시험을 수행하였다. 연구결과 전자뇌관 100% 적용한 경우 발파진동의 저감효과가 가장 크고, 전자뇌관 비율을 일정 수준 감소시켜도 발파진동 제어 효과가 있는 것으로 나타났다.
지능형 사물인터넷 (AIoT)의 핵심 응용 분야인 스마트시티는 안전, 보안, 의료 분야에서 위치 추적 및 위치 기반의 다양한 서비스를 제공한다. 위치 기반 서비스를 구현하기 위해서 실내 측위 시스템 (IPS)이 필요하며, WiFi, UWB, BLE 등의 무선통신 기술이 적용되고 있다. 저전력으로 데이터 송수신이 가능한 BLE는 저비용으로 센서, 비콘 등의 다양한 사물인터넷 소형 장치에 적용될 수 있어서 실내 측위를 위한 가장 적합한 무선통신 기술 중 하나이다. BLE는 RSSI(Received Signal Strength Indicator)를 이용하여 거리를 추정하는데, 다중 경로 페이딩(fading)의 영향으로 인한 신호 강도 변화로 인해서 수 미터 수준의 오차가 발생하게 된다. 본 논문에서는 근접 서비스를 제공하기 위한 BLE 실내 측위 시스템에 적용할 수 있는 경로 손실 모델을 연구하고, 자유공간 경로손실 계수의 최적화로 송·수신 장치 사이의 거리 오차를 줄일 수 있다는 것을 확인하였다.
본 연구는 이동 객체 추출 및 추적 방법 및 장치에 관한 것으로, 특히 인접 영상 간의 차영상을 이용하여 객체를 추출하고, 추출된 객체의 위치정보를 지속적으로 전달함으로써 적어도 하나의 이동 객체의 정확한 위치정보를 토대로 이동 객체를 추적하는 이동 객체 추출 및 추적 방법 및 장치에 관한 것이다. 사람과 컴퓨터의 상호작용의 표현에서 시작된 사람추적은 로봇학습, 객체의 카운팅, 감시 시스템 등의 많은 응용분야에서 사용되고 있으며, 특히 보안 시스템분야에서 카메라를 이용하여 사람을 인식하고 추적하여 위법행위를 자동적으로 찾아낼 수 있는 감시 시스템 개발의 중요성이 나날이 커져 가고 있다.
Gil-Sun Hong;Miso Jang;Sunggu Kyung;Kyungjin Cho;Jiheon Jeong;Grace Yoojin Lee;Keewon Shin;Ki Duk Kim;Seung Min Ryu;Joon Beom Seo;Sang Min Lee;Namkug Kim
Korean Journal of Radiology
/
제24권11호
/
pp.1061-1080
/
2023
Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.
본 연구의 목적은 방한 외국인을 위한 블록체인 기반 결제시스템에 대한 소비자 수용의도를 규명하여 거래 편의성을 높이는 결제플랫폼 개발의 방향성을 제시하는 것이다. 이를 위해 블록체인의 특성으로 보안성, 신뢰성, 기능성을 도출 했다. 도출된 특성을 토대로 제안된 모델의 구조적 검증을 통해 소비자들의 측면에서 블록체인 기술수용에 영향을 미치는 요인을 확인하였다. 통합기술수용이론을 적용하여 성과기대, 노력기대, 사회적 영향, 촉진 조건, 인지된 혜택과 수용의도 간의 인과관계, 개인의 혁신성과 블록체인 인지수준에 따른 조절효과를 검증하였다. 개인의 혁신성과 블록체인 기술 인지수준에 따른 수용의도 차이에서도 혁신성향이 강하고 전반적인 기술에 대한 인지상태가 높은 집단이 블록체인 시스템을 기반으로 제시된 블록체인 수용의도에 더 많은 인과관계를 보여주었다. 또한, 블록체인 수용의도에 직접적인 영향을 미치는 요인은 기대되는 편익(성과기대), 이 서비스를 사용하기 위해 필요한 기술적 기반구조(촉진조건), 소비자 입장에서의 인지된 혜택(보안 및 신뢰, 기능성) 등 4가지 기제이다. 새로운 기술의 용이성(노력기대)과 기술을 도입할 때 주변 환경의 영향(사회적 영향)은 수용의도에 유의미한 영향을 미치지 못했다.
큐브위성은 저비용, 짧은 개발 기간, 임무 지향적 성능 고도화, 군집 및 편대 비행을 통한 다양한 임무 수행이 가능하여 지구관측, 우주탐사, 우주 과학기술 검증 등 다양한 분야에서 활용성이 높다. 최근 큐브위성의 활용성이 높아지고 응용 분야가 확대됨에 따라 대용량 데이터의 고속 전송에 대한 요구가 전례 없이 증가하고 있는 추세이다. 레이저 기반 자유공간 광통신 기술은 기존 전파통신 방식 대비 고속으로 대용량 데이터 전송이 가능하고, 비면허대역 스펙트럼 사용, 저비용, 저전력, 높은 보안 특성 및 소형 통신 플랫폼의 활용 가능성 등 다양한 장점이 있어 큐브위성 임무 지원을 위한 고성능 통신 수단으로 적합하다. 본 논문에서는 큐브위성 기반 우주 레이저 통신 핵심 구성요소 및 특징을 살펴보고, 최근 연구동향, 대표 기술개발 사례 그리고 실증 결과와 함께 향후 개발 계획 등에 대해 살펴보고자 한다.
Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.
본 연구에서는 움직임 센서 모듈과 딥러닝을 활용하여 반려견의 행동을 실시간으로 인식하고 분석하는 방법을 제안한다. 일반적으로 반려견의 행동을 파악하는 홈 CCTV(Closed-Circuit Television)는 개인의 사생활 보호 문제와 보안 이슈가 있어 이를 극복하기 위한 새로운 기술의 필요성이 제기되고 있다. 본 논문에서는 움직임 센서에서 측정되는 데이터를 기반으로 반려견의 행동을 분석하고 케어할 수 있는 시스템을 제안한다. 본 연구에서는 MLP(Multi-Layer Perceptron)와 CNN(Convolutional Neural Network) 모델을 비교하여 반려견 행동 분석에 적합한 모델을 선정하고 최적화를 하였으며, 실험 결과, 제안된 MLP 모델은 평균 82.19%의 정확도를 보이는 것을 확인하였으며, 모델 경량화를 통해 임베디드 환경에서 효율적으로 활용될 수 있음을 확인하였다.
본 연구는 급변하는 안보환경에 대응하기 위해 미국에서 적용 중인 임무공학(Mission Engineering) 개념과 방법론을 한국의 국방기획관리체계에 도입하는 방안을 모색하였다. 이를 위해 문헌연구와 선행연구 분석, 사례분석, 심층그룹인터뷰(FGI) 등을 통해 임무공학의 핵심요소를 도출하고, 이를 바탕으로 한국군의 소요기획과 신속 획득체계 개선방안을 제시하였다. 연구 결과, 운용개념, 요구성능(능력), 획득이 임무공학 적용을 위한 3대 핵심요소로 식별되었다. 개선방안으로는 임무 중심의 소요기획 체계로의 전환, 운용개념 작성 시 임무공학 방법론 적용, 의사결정 지원을 통한 획득기간 단축, 신속 획득을 위한 예산 배정 및 소요군 역량 강화 등이 제안되었다. 본 연구는 임무공학의 필요성과 적용 가능성을 확인하고, 향후 국방기획관리체계 발전을 위한 기초자료로 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.