• 제목/요약/키워드: appearance properties

검색결과 840건 처리시간 0.032초

Comparative analysis of the magnetic and the transport properties of electron- and hole-doped manganite films

  • Kim, K.W.;Prokhorov, V.G.;Flis, V.S.;Park, J.S.;Eom, T.W.;Lee, Y.P.;Svetchnikov, V.L.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.226-226
    • /
    • 2010
  • Microstructure, magnetic and transport properties of as-deposited electron-doped $La_{1-x}Ce_xMnO_3$ and hole-doped $La_{1-x}Ce_xMnO_3$ films prepared by pulse laser deposition, with x = 0.1 and 0.3, have been investigated. The microstructural analysis reveals that the $La_{1-x}Ce_xMnO_3$ films have a column-like microstructure and a strip-domain phase with a periodic spacing of about 3c, which were not found for the $La_{1-x}Ce_xMnO_3$ ones. At the same time, the experimental results manifest that there is no fundamental difference in the magnetic and the transport properties between electron- and hole-doped manganite films, except the appearance of ferromagnetic response in the low-doped $La_{0.9}Ce_{0.1}MnO_3$ film at temperatures above the Curie point. The observed magnetic behavior, typical for the Griffiths-like phase, for this film is explained by the percolation mechanism of the ferromagnetic transition and by the presence of strip-domain phase which stimulates the magnetic phase separation.

  • PDF

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures

  • Nematzadeh, Mahdi;Baradaran-Nasiria, Ardalan
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.19-35
    • /
    • 2019
  • In this paper, the effect of the type and amount of fibers on the physicomechanical properties of concrete containing fine recycled refractory brick (RRB) and natural aggregate subjected to elevated temperatures was investigated. For this purpose, forta-ferro (FF), polypropylene (PP), and polyvinyl alcohol (PVA) fibers with the volume fractions of 0, 0.25, and 0.5%, as well as steel fibers with the volume fractions of 0, 0.75, and 1.5% were used in the concrete containing RRB fine aggregate replacing natural sand by 0 and 100%. In total, 162 concrete specimens from 18 different mix designs were prepared and tested in the temperature groups of 23, 400, and $800^{\circ}C$. After experiencing heat, the concrete properties including the compressive strength, ultrasonic pulse velocity (UPV), weight loss, and surface appearance were evaluated and compared with the corresponding results of the reference (unheated) specimens. The results show that using RRB fine aggregate replacing natural fine aggregate by 100% led to an increase in the concrete compressive strength in almost all the mixes, and only in the PVA-containing mixes a decrease in strength was observed. Furthermore, UPV values at $800^{\circ}C$ for all the concrete mixes containing RRB fine aggregate were above those of the natural aggregate concrete specimens. Finally, regarding the compressive strength and UPV results, steel fibers demonstrated a better performance relative to other fiber types.

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

Wear of contemporary dental composite resin restorations: a literature review

  • Dimitrios Dionysopoulos;Olga Gerasimidou
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.18.1-18.13
    • /
    • 2021
  • Composite resins are the most commonly used dental restorative materials after minimally invasive dental procedures, and they offer an aesthetically pleasing appearance. An ideal composite restorative material should have wear properties similar to those of tooth tissues. Wear refers to the damaging, gradual loss or deformation of a material at solid surfaces. Depending on the mechanism of action, wear can be categorized as abrasive, adhesive, fatigue, or corrosive. Currently used composite resins cover a wide range of materials with diverse properties, offering dental clinicians multiple choices for anterior and posterior teeth. In order to improve the mechanical properties and the resistance to wear of composite materials, many types of monomers, silane coupling agents, and reinforcing fillers have been developed. Since resistance to wear is an important factor in determining the clinical success of composite resins, the purpose of this literature review was to define what constitutes wear. The discussion focuses on factors that contribute to the extent of wear as well as to the prevention of wear. Finally, the behavior of various types of existing composite materials such as nanohybrid, flowable, and computer-assisted design/computer-assisted manufacturing materials, was investigated, along with the factors that may cause or contribute to their wear.

3D Printing of Materials and Printing Parameters with Animal Resources: A Review

  • Eun Young Jeon;Yuri Kim;Hyun-Jung Yun;Bum-Keun Kim;Yun-Sang Choi
    • 한국축산식품학회지
    • /
    • 제44권2호
    • /
    • pp.225-238
    • /
    • 2024
  • 3D printing technology enables the production of creative and personalized food products that meet consumer needs, such as an attractive visual appearance, fortification of specific nutrients, and modified textures. To popularize and diversify 3D-printed foods, an evaluation of the printing feasibility of various food pastes, including materials that cannot be printed natively, is necessary. Most animal resources, such as meat, milk, and eggs, are not inherently printable; therefore, the rheological properties governing printability should be improved through pre-/post-processing or adding appropriate additives. This review provides the latest progress in extrusion-based 3D printing of animal resource-based inks. In addition, this review discusses the effects of ink composition, printing conditions, and post-processing on the printing performance and characteristics of printed constructs. Further research is required to enhance the sensory quality and nutritional and textural properties of animal resource-based printed foods.

Study on Red and Black Heartwood Properties of Cryptomeria Japonica in Southern Region of Korea

  • Won, Kyung-Rok;Jung, Su-Young;Yoo, Byung-Oh;Hong, Nam-Euy;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.753-761
    • /
    • 2017
  • The heartwood (HW) of Japanese cedar (Cryptomeria japonica) has usually a reddish color. But some trees have black-colored heartwood (BHW). BHW of Japanese cedar has a low commercial value because of the appearance. Therefore, in this study, a comparative analysis was conducted to evaluate the differences in the physical, mechanical, and inorganic element properties, and decay resistance of red-colored heartwood tree (RHW) and BHW. The physical properties showed significant difference between sapwood (SW) and HW, but there was no significant difference between RHW and BHW. From the results of mechanical properties, no significant difference was recognized in SW of RHW, HW of RHW, SW of BHW, and HW of BHW. There were decay resistance differences between RHW and BHW in HW, and between HW and SW in both RHW and BHW, respectively. The magnesium (Mg), potassium (K), and calcium (Ca) contents had significant differences between SW and HW in both RHW and BHW. In this present study, the decay resistances and the contents of Mg and K were higher in HW than in SW both for RHW and BHW, while these measurements were lower in RHW than in BHW. Therefore, BHW was considered to be worthy as a high-quality material as RHW.

Effects of Red Bean (Vigna angularis) Protein Isolates on Rheological Properties of Microbial Transglutaminase Mediated Pork Myofibrillar Protein Gels as Affected by Fractioning and Preheat Treatment

  • Jang, Ho Sik;Lee, Hong Chul;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제36권5호
    • /
    • pp.671-678
    • /
    • 2016
  • Fractioning and/or preheating treatment on the rheological properties of myofibrillar protein (MP) gels induced by microbial transglutaminase (MTG) has been reported that they may improve the functional properties. However, the optimum condition was varied depending on the experimental factors. This study was to evaluate the effect of red bean protein isolate (RBPI) on the rheological properties of MP gels mediated by MTG as affected by modifications (fractioning: 7S-globulin of RBPI and/or preheat treatment (pre-heating; 95℃/30 min): pre-heating RBPI or pre-heating/7S-globulin). Cooking yields (CY, %) of MP gels was increased with RBPI (p<0.05), while 7S-globulin decreased the effect of RBPI (p<0.05); however, preheating treatments did not affect the CY (p>0.05). Gel strength of MP was decreased when RBPI or 7S-globulin added, while preheat treatments compensated for the negative effects of those in MP. This effect was entirely reversed by MTG treatment. Although the major band of RBPI disappeared, the preheated 7S globulin band was remained. In scanning electron microscopic (SEM) technique, the appearance of more cross-linked structures were observed when RBPI was prepared with preheating at 95℃ to improve the protein-protein interaction during gel setting of MP mixtures. Thus, the effects of RBPI and 7S-globulin as a substrate, and water and meat binder for MTG-mediated MP gels were confirmed to improve the rheological properties. However, preheat treatment of RBPI should be optimized.

스프링클러 소화설비의 목조문화재 소화성능에 관한 연구 (The Study of Fire Suppression Capability of Sprinkler System for Wooden Cultural Properties)

  • 노삼규;함은구;김동철
    • 한국화재소방학회논문지
    • /
    • 제25권6호
    • /
    • pp.51-57
    • /
    • 2011
  • 본 연구는 국내 목조문화재의 화재에 대한 수계 자동소화시스템 중에 범용의 스프링클러 소화시스템에 대한 소화성능을 소화실험을 통하여 확인해 보았다. 목조문화재는 가연성의 재질로 구성되어 있어 화재에 취약하며, 방화의 경우 화재의 성상 초기부터 화원의 규모가 커질 수 있다. 본 실험에 적용된 스프링클러 헤드는 방사압 1 bar, 방수량 80 lpm의 사양을 지니고 있다. 소화실험의 유형은 화원의 규모별, 문화재 규모별로 각각 둘로 구분하여 소화성능을 실험하였다. 소화실험을 통해 확인된 사항은 천장이 높으면 소화 시간이 지연되는 결과가 발생하며, 화원의 규모가 2단위에서는 소화는 가능하였지만 소화가 지연되는 것으로 나타났다. 그 결과 천장이 높고, 화원의 규모가 2단위 이상이 되면 소화성능이 낮을 것으로 예측된다. 실제 목조문화재의 화재 성장 환경이 소화실험 모형보다 유리하다는 측면을 고려해야 한다. 그러므로 스프링클러 소화설비를 목조문화재에 적용 할 때에 헤드간 거리 헤드의 선정 등 충분한 검증이 요구된다.

초등학교 수학에서 0의 의미와 성질에 대한 고찰 (Some Notes on the Meaning and the Properties of Zero in Elementary School Mathematics)

  • 백대현
    • 한국초등수학교육학회지
    • /
    • 제23권1호
    • /
    • pp.43-57
    • /
    • 2019
  • 초등학교 1학년 수학에서 '아무것도 없음'을 나타내는 수 0은 '1보다 1작은 수'의 의미로 도입된다. 또한 1, 2학년 수학에서 처음 제시되는 0의 성질은 0을 더하고, 빼고, 곱하는 예시적인 상황으로 설명된다. 그러나 이후 학습에서는 0의 의미와 성질을 더 이상 명시적으로 다루지 않는다. 본 연구에서는 초등학교 학생들이 0의 의미와 성질을 이해하는 데 도움을 주기 위하여 초등학교 수학 교과서에 제시된 0의 도입 방식과 계산식을 해결하는 과정에서의 0의 성질의 적용 방안에 대하여 논의하고자 한다. 이를 통해 초등학교 수학에서 0의 의미와 성질에 관한 교육적 시사점을 도출하고자 한다.

  • PDF