References
- ACI 228.2R-98 (2004), Nondestructive Test Methods for Evaluation of Concrete in Structures, American Concrete Institute, Farmington Hills, MI.
- ACI Committee 216 (1989), Guide for Determining the Fire Endurance of Concrete Elements (ACI 216R-89), American Concrete Institute, Detroit.
- Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T. (2016), "Highperformance fiber-reinforced concrete: a review", J. Mater. Sci., 51(14), 6517-6551. https://doi.org/10.1007/s10853-016-9917-4.
- Albano, C., Camacho, N., Hernandez, M., Matheus, A. and Gutierrez, A. (2009), "Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios", Waste Manage., 29(10), 2707-2716. https://doi.org/10.1016/j.wasman.2009.05.007.
- Aliabdo, A.A., Abd-Elmoaty, A.E.M. and Hassan, H.H. (2014), "Utilization of crushed clay brick in concrete industry", Alex. Eng. J., 53(1), 151-168. https://doi.org/10.1016/j.aej.2013.12.003.
- Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Saf. J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003.
- ASTM C143/C143M (2003), Standard Test Method for Slump of Hydraulic-Cement Concrete, Annual Book of ASTM Standard 04.
- ASTM C150 (2003), Standard Specification for Portland Cement, Annual Book of ASTM Standard 04.
- ASTM C192/C192M (2002), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, Annual Book of ASTM Standard 04.
- ASTM C33 (2003), Standard Specification for Concrete Aggregates, Annual book of ASTM standard 04.
- ASTM C494 (2016), Standard Specification for Chemical Admixtures for Concrete, American Society for Testing and Materials International, United States.
- ASTM C597 (2016), Standard Test Method for Pulse Velocity Through Concrete, American Society for Testing Materials International, United States.
- Banthia, N. and Gupta, R. (2004), "Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices", Mater. Struct., 37(10), 707-716. https://doi.org/10.1007/BF02480516.
- Baradaran-Nasiri, A. and Nematzadeh, M. (2017), "The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement", Constr. Build. Mater., 147, 865-875. https://doi.org/10.1016/j.conbuildmat.2017.04.138.
- BS 1881-116 (1983), Testing Concretes, Method for Determination of Compressive Strength of Concrete Cubes.
- Buratti, N., Mazzotti, C. and Savoia, M. (2011), "Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes", Constr. Build. Mater., 25(5), 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022.
- Chen, G.M., He, Y.H., Yang, H., Chen, J.F. and Guo, Y.C. (2014), "Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater., 71, 1-15. https://doi.org/10.1016/j.conbuildmat.2014.08.012.
- Choumanidis, D., Badogiannis, E., Nomikos, P. and Sofianos, A. (2016), "The effect of different fibres on the flexural behaviour of concrete exposed to normal and elevated temperatures", Constr. Build. Mater., 129, 266-277. https://doi.org/10.1016/j.conbuildmat.2016.10.089.
- Cree, D., Green, M. and Noumowe, A. (2013), "Residual strength of concrete containing recycled materials after exposure to fire: a review", Constr. Build. Mater., 45, 208-223. https://doi.org/10.1016/j.conbuildmat.2013.04.005.
- Domski, J., Katzer, J., Zakrzewski, M. and Ponikiewski, T. (2017), "Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete", J. Clean. Prod., 158, 18-28. https://doi.org/10.1016/j.jclepro.2017.04.165.
- Eurocode 4 (2004), EN 1994-1-2:2004, Design of Composite Steel and Concrete Structures-Part 1-2: General Rules for Structural Fire Design.
- Ghahremannejad, M., Mahdavi, M., Saleh, A.E., Abhaee, S. and Abolmaali, A. (2018), "Experimental investigation and identification of single and multiple cracks in synthetic fiber concrete beams", Case Stud. Constr. Mater., 9, e00182. https://doi.org/10.1016/j.cscm.2018.e00182.
- Grunewald, S. and Walraven, J.C. (2001), "Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete", Cement Concrete Res., 31(12), 1793-1798. https://doi.org/10.1016/S0008-8846(01)00555-5.
- Gul, R., Demirboga, R. and Guvercin, T. (2006), "Compressive strength and ultrasound pulse velocity of mineral admixtured mortars", IJEMS, 13(1).
- Guneyisi, E., Gesoglu, M., Ozturan, T. and Ipek, S. (2015), "Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber", Constr. Build. Mater., 84, 156-168. https://doi.org/10.1016/j.conbuildmat.2015.03.054.
- Halicka, A., Ogrodnik, P. and Zegardlo, B. (2013), "Using ceramic sanitary ware waste as concrete aggregate", Constr. Build. Mater., 48, 295-305. https://doi.org/10.1016/j.conbuildmat.2013.06.063.
- Hansen, T.C. (2004), Recycling of Demolished Concrete and Masonry, CRC Press.
- Hsie, M., Tu, C. and Song, P. S. (2008), "Mechanical properties of polypropylene hybrid fiber-reinforced concrete", Mater. Sci. Eng.: A, 494(1), 153-157. https://doi.org/10.1016/j.msea.2008.05.037.
- IS 13311-1 (1992), Non-Destructive Testing of Concrete-Methods of Tests, Bureau of Indian Standard, New Delhi, India.
- Khalaf, F.M. and DeVenny, A.S. (2004), "Recycling of demolished masonry rubble as coarse aggregate in concrete", J. Mater. Civil Eng., 16(4), 331-340. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:4(331).
- Khalaf, F.M. and DeVenny, A.S. (2005), "Properties of new and recycled clay brick aggregates for use in concrete", J. Mater. Civil Eng., 17(4), 456-464. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(456).
- Li, X., Bao, Y., Wu, L., Yan, Q., Ma, H., Chen, G. and Zhang, H. (2017b), "Thermal and mechanical properties of highperformance fiber-reinforced cementitious composites after exposure to high temperatures", Constr. Build. Mater., 157, 829-838. https://doi.org/10.1016/j.conbuildmat.2017.09.125.
- Li, X., Bao, Y., Xue, N. and Chen, G. (2017a), "Bond strength of steel bars embedded in high-performance fiber-reinforced cementitious composite before and after exposure to elevated temperatures", Fire Saf. J., 92, 98-106. https://doi.org/10.1016/j.firesaf.2017.06.006.
- Liu, Y., Wang, W., Chen, Y.F. and Ji, H. (2016), "Residual stressstrain relationship for thermal insulation concrete with recycled aggregate after high temperature exposure", Constr. Build. Mater., 129, 37-47. https://doi.org/10.1016/j.conbuildmat.2016.11.006.
- Meng, W. and Khayat, K.H. (2018), "Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPC", J. Mater. Civil Eng., 30(4), 04018030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002212.
- Mohammadhosseini, H. and Yatim, J. M. (2017), "Microstructure and residual properties of green concrete composites incorporating waste carpet fibers and palm oil fuel ash at elevated temperatures", J. Clean. Prod., 144, 8-21. https://doi.org/10.1016/j.jclepro.2016.12.168.
- Mohammadhosseini, H., Lim, N.H.A.S., Sam, A.R.M. and Samadi, M. (2018), "Effects of elevated temperatures on residual properties of concrete reinforced with waste polypropylene carpet fibres", Arab. J. Sci. Eng., 43(4), 1673-1686. https://doi.org/10.1007/s13369-017-2681-1.
- Nematzadeh, M. and Baradaran-Nasiri, A. (2018), "Residual properties of concrete containing recycled refractory brick aggregate at elevated temperatures", J. Mater. Civil Eng., 30(1), 04017255. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002125.
- Nematzadeh, M. and Fallah-Valukolaee, S. (2017a), "Effectiveness of fibers and binders in high-strength concrete under chemical corrosion", Struct. Eng. Mech., 64(2), 243-257. https://doi.org/10.12989/sem.2017.64.2.243.
- Nematzadeh, M. and Fallah-Valukolaee, S. (2017b), "Erosion resistance of high-strength concrete containing forta-ferro fibers against sulfuric acid attack with an optimum design", Constr. Build. Mater., 154, 675-686. https://doi.org/10.1016/j.conbuildmat.2017.07.180.
- Nematzadeh, M. and Hasan-Nattaj, F. (2017), "Compressive stress-strain model for high-strength concrete reinforced with Forta-Ferro and steel fibers", J. Mater. Civil Eng., 29(10), 04017152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001990.
- Nematzadeh, M. and Poorhosein, R. (2017), "Estimating properties of reactive powder concrete containing hybrid fibers using UPV", Comput. Concrete, 20(4), 491-502. https://doi.org/10.12989/cac.2017.20.4.491.
- Nik, A.S. and Omran, O.L. (2013), "Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO 2 using ultrasonic pulse velocity", Constr. Build. Mater., 44, 654-662. https://doi.org/10.1016/j.conbuildmat.2013.03.082.
- Peng, G.F., Yang, W.W., Zhao, J., Liu, Y.F., Bian, S.H. and Zhao, L.H. (2006), "Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures", Cement Concrete Res., 36(4), 723-727. https://doi.org/10.1016/j.cemconres.2005.12.014.
- Poorhosein, R. and Nematzadeh, M. (2018), "Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete", Comput. Concrete, 21(2), 167-179. https://doi.org/10.12989/cac.2018.21.2.167.
- Qian, C.X. and Stroeven, P. (2000), "Development of hybrid polypropylene-steel fibre-reinforced concrete", Cement Concrete Res., 30(1), 63-69. https://doi.org/10.1016/S0008-8846(99)00202-1.
- Sagoe-Crentsil, K.K., Brown, T. and Taylor, A.H. (2001), "Performance of concrete made with commercially produced coarse recycled concrete aggregate", Cement Concrete Res., 31(5), 707-712. https://doi.org/10.1016/S0008-8846(00)00476-2.
- Sarhat, S.R. and Sherwood, E.G. (2012), "Residual mechanical response of recycled aggregate concrete after exposure to elevated temperatures", J. Mater. Civil Eng., 25(11), 1721-1730. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000719.
- Soroushian, P. and Bayasi, Z. (1991), "Fiber type effects on the performance of steel fiber reinforced concrete", Mater. J., 88(2), 129-134.
- Wijayasundara, M., Mendis, P. and Crawford, R H. (2018), "Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete", J. Clean. Prod., 174, 591-604. https://doi.org/10.1016/j.jclepro.2017.10.301
- Xiao, J., Li, J. and Zhang, C. (2005), "Mechanical properties of recycled aggregate concrete under uniaxial loading", Cement Concrete Res., 35(6), 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020.
- Yao, W., Li, J. and Wu, K. (2003), "Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction", Cement Concrete Res., 33(1), 27-30. https://doi.org/10.1016/S0008-8846(02)00913-4.
- Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025.
- Yu, K.Q., Dai, J.G., Lu, Z.D. and Leung, C.K. (2015), "Mechanical properties of engineered cementitious composites subjected to elevated temperatures", J. Mater. Civil Eng., 27(10), 04014268. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001241.
Cited by
- Flexural strength of concrete-galvalume composite beam under elevated temperatures vol.27, pp.1, 2019, https://doi.org/10.12989/cac.2021.27.1.013
- Effect of basalt fiber on the freeze-thaw resistance of recycled aggregate concrete vol.28, pp.2, 2019, https://doi.org/10.12989/cac.2021.28.2.115