• Title/Summary/Keyword: antioxidant protein

Search Result 1,594, Processing Time 0.029 seconds

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Whitening and Anti-oxidative Constituents from the Extracts of Hydrangea petiolaris Leaves (등수국 잎 추출물 유래 미백 및 항산화 활성 성분)

  • Jo, Seong Mi;Kim, Jung Eun;Lee, Nam Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.123-134
    • /
    • 2022
  • In this study, the whitening and antioxidant effects of the extracts from Hydrangea petiolaris (H. petiolaris) leaves was confirmed, and the chemical structure was identified by separating the active ingredients. In the whitening tests using α-MSH stimulated B16F10 melanoma cells, the n-hexane (Hex) fraction inhibited the cellular melanogenesis and intracellular tyrosinase activities without causing cell toxicity. In addition, the Hex fraction reduced expression of tyrosinase and TRP-2 protein. Upon the anti-oxidative studies by DPPH and ABTS+ radicals, potent radical scavenging activities were observed in the ethyl acetate (EtOAc) fraction. Also, for the cellular protective effects on HaCat keratinocytes damaged by H2O2, the EtOAc fraction indicated protective effects against oxidative stress. Eight phytochemicals were isolated from the extract of H. petiolaris leaves; ethyl linoleate (1), ethyl linolenate (2), 1-linoleoyl glycerol (3), 1-linolenoyl glycerol (4), epi-catechin (5), afzelin (6), quercitrin (7), hyperin (8). Among the isolates, the compounds 5 - 8 showed DPPH and ABTS+ radical scavenging activities. The contents of quercitirin, a major isolated in this extract, determined by HPLC analysis were confirmed to be about 31.3 mg/g for the 70% ethanol extract and 169.8 mg/g for the EtOAc fraction. Based on these results, it was suggested that the extract from H. petiolaris leaves could be potentially applicable as whitening and anti-oxidative ingredients in cosmetic formulations.

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.

Evaluation of Evodiae Fructus Extract on the Chronic Acid Reflux Esophagitis in Rats (오수유(吳茱萸) 추출물이 만성 역류성 식도염 흰쥐에 미치는 효능 평가)

  • Lee, Jin A;Park, Hae-Jin;Kim, Soo Hyun;Kim, Min Ju;Kim, Kyeong Jo;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.34 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • Objective : Reflux esophagitis (RE) is a disease that caused gastric acid reflux and inflammation due to unstable gastroesophageal sphincter, as increasing worldwide respectively. This study was conducted to evaluate the effect of Evodiae Fructus (EF) extract on chronic reflux esophagitis in rats. Methods : The EF was measured antioxidant activity, such as total polyphenol and total flavonoid contents, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethyl-enzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Rats were divided into 3 groups; Nor (normal group), Con (chronic acid reflux esophagitis rats treatment with water), EF (chronic acid reflux esophagitis rat treatment with EF 200 mg/kg body weight group). A surgically-induced chronic acid reflux esophagitis (CARE) model was established in SD rats, and treated with water or EF 200 mg/kg body weight for 14 consecutive days. Results : Administration of EF to rats of induction of chronic acid reflux esophagitis was found to reduce esophagus tissues injury. Reactive oxygen species (ROS) and produces peroxynitrite ($ONOO^-$) levels of esophagus tissues were significantly decreased in EF compared to Con group. As results of esophagus protein analyses, EF effectively reduce inflammatory-related factors ($NF-{\kappa}Bp65$, $p-I{\kappa}B{\alpha}$, iNOS, $TNF-{\alpha}$, IL-6), and increase anti-oxidant enzyme (Nrf2, HO-1, SOD, catalase, GPx-1/2). Conclusions : These results suggest that EF administration comfirmed that decreased esophagus tissues injury, oxidantive stress, anti-inflammation effect, and increased anti-oxidant effect. Therefore, EF was the potential to be used as a natural therapeutic drug.

Effect of Cnidium japonicum Miq. Crude Extracts on UVB-induced Photoaging Damage in Human Keratinocytes (HaCaT 세포에서 UVB로 유도된 광노화에 대한 갯사상자 추출물의 효능)

  • Eun Seong Lee;Jung Hwan Oh;Chang-Suk Kong;Youngwan Seo
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.414-421
    • /
    • 2023
  • Cnidium japonicum (C. japonicum) is a type of halophyte that inhabits soil of a high salinity, and according to previous studies, it is known to have antitumor effects. However, the skin's protective effect, particularly against UVB irradiation, has not been revealed. In this study, C. japonicum crude extract was studied to determine its effect on damage to human keratinocytes (HaCaT) induced by UVB irradiation, and ROS assays were performed, the results of which showed that C. japonicum crude extract affects UVB-induced photoaging damage in human keratinocytes. To examine inhibitory effects against the expressions of MMPs, RT-PCR and Western blot assay were performed by treating the crude extract at concentrations of 10, 50, and 100 ㎍/ml by irradiating UVB at 15 mJ/cm2. As a result, it was confirmed that the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-9 decreased in the group treated with C. japonicum crude extract, which also effectively regulated the antioxidant defense mechanism pathway by activating JNK, ERK, and p38. In conclusion, the current study suggested the possibility that C. japonicum could be used as a raw material for anti-photoaging cosmeceuticals in the future.

Effects of Body Composition, Nutrient Intakes and Biochemical Indices on Skin Health Status of Female University Students with Sensitive Skin (체성분, 영양소 섭취상태 및 생화학적 지표가 민감성 피부 여대생의 피부건강상태에 미치는 영향)

  • Kim, Mi-Young;Cho, Kyung-Dong;Baek, Ok-Hee;Lee, Bog-Hieu
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.2
    • /
    • pp.258-267
    • /
    • 2008
  • The purpose of this study was to investigate the effects that body composition, nutrient intake, and biochemical indices have on skin status, as well as their associations with skin health status, by assessing 44 female university students. The subjects were classified into 3 groups according to skin sensitivity: sensitive skin (n=11), slightly sensitive skin (n=24), and normal skin (n=9). The study included anthropometric measurements and body composition analyses, dietary intake evaluations, blood chemical analyses, and skin health status assessments. Based on % body fat, the results indicated the subjects were moderately obese (29.6%). Obesity indices were not different among the groups, but the sensitive skin group tended to have higher skinfold thickness. Dry skin was determined as the skin type of all subjects. In the sensitive skin groups, U-zone and T-zone sebum were significantly lower (p<0.05), and spots were significantly higher (p<0.05) than in the normal skin group. In terms of nutrient intakes, the sensitive skin groups consumed significantly lower amounts of P and vitamins A and E (p<0.05). There were no significant differences in serum lipid fractions or total antioxidant status among the groups. In correlation coefficients analysis, skin elasticity had significant negative correlations with subscapular and midaxillary skinfold thickness, body protein, and body minerals (p<0.05). Wrinkling had positive correlations with triceps and thigh skinfold thickness (p<0.05). Skin evenness had negative correlations with energy intake, vitamins A, $B_1,\;B_2$, C, E, niacin, and zinc (p<0.05), as well as folate and P (p<0.01) and vitamin $B_6$ (p<0.001). A similar correlation tendency was observed for spots and nutrient intake, showing negative correlations with vitamins A, $B_6$, and E, as well as folate, Fe, and P. U-zone sebum showed significant positive correlations with serum levels of total cholesterol and triglycerides. From these findings, skin health status appears to be affected by both nutrient intake and body composition. Therefore, having a proper balance between dietary intake and body composition may influence skin health status in females with sensitive skin.

Regeneration of adventitious root from Calystegia soldanella L. in Jeju island and mass proliferation method using bioreactor system (제주지역 갯메꽃(Calystegia soldanella L.) 유래 부정근 재분화 및 생물반응기 시스템 이용 대량증식법)

  • Jong-Du Lee;Eunbi Jang;Weon-Jong Yoon;Yong-Hwan Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.37-37
    • /
    • 2021
  • Calystegia soldanella L. is a perennial herbaceous halophyte belonging to the convolvulaceae family, which mainly grows in coastal sand dunes in Korea. Shoots and rhizomes are edible, and roots called 'Hyoseon Chogeun' are known to have medicinal effects such as antipyretic, sterilization, and diuretic. In addition, physiological activities of antioxidant, anti-inflammatory, antiviral, antifungal and PTP-1B (protein tyrosine phosphate-1B) inhibition have been reported. In this study, in vitro induction cell lines of C. soldanella L. collected from the coastal sand dunes in Jeju island was redifferentiated into adventitious roots that can be used as medicinal resources. Also the biomass of mass-proliferated adventitious roots using a bioreactor were evaluated. Plants of C. soldanella L. were collected from the crevice of the seashore in the coastal area of Taeheung 2-ri, Namwon-eup, Seogwipo-si. Then, it was separated into leaves, stems, rhizomes, and roots, and surface sterilized with 70% ethyl alcohol and 2% NaOCl (sodium hypochlorite). After washing with sterilized water, each organ section was cultured in Hormone-free MS medium (Murashige & Skoog Medium). As a result, the induction response rates were evaluated at 85% and 55%, respectively, in terms of callus formation and shoot generation in the rhizome segment. In the case of the adventitious roots morphological characteristics induced by single-use treatment of auxin-based plant growth regulators IBA and NAA from redifferentiated shoots were compared. Most efficient adventitious root culture method as a rooting rate, number, length, and biomass proliferation in the bioreactor system was confirmed when treated by culturing in MS salts, Sucrose 30 g·L-1, and IBA 1mg·L-1 for 4 weeks. In this study, the medium composition and culture period were confirmed using a bioreactor system to mass-proliferate adventitious roots derived from C. soldanella L. in Jeju island. Also this adventitious root line developed a new medicinal material could increase value of the bio-industry ingredient through quantitative and qualitative screening of phyto-bioactive compounds.

  • PDF

Effects of Smilax China L. on the Growth of Skin Cancer Cells (토복령(土茯笭)이 피부암 세포의 성장에 미치는 영향)

  • Si-Yeol Song;Min-Yeong Jung;Jeong-Hwa Choi;Soo-Yeon Park
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Objectives : We aimed to study the effect of Smilax China L.(SCL), which has anti-inflammatory, antioxidant, and anticancer effects, on the growth of skin cancer cells. Methods : HaCaT cells, a normal human cell line, and skin cancer cells including A431, SK-MEL-5 and SK-MEL-28 cells were treated with Smilax China L. ethanol extract(SCL-EtOH) at concentrations of 5, 10, 20 and 40㎍/㎖. Meanwhile, JB6 Cl41, a normal mouse epithelial cell line, was treated with epidermal growth factor(EGF) and phorbol 12-myristate 13-acetate(TPA), an inflammatory factor, to induce cell transformation and treated with SCL-EtOH. In addition, we treated SK-MEL-5 and SK-MEL-28 cells with SCL-EtOH at various concentrations and checked the effect on the cell cycle. Results : As a result, it showed no toxicity to HaCaT cells up to the highest concentration of 40㎍/㎖, and significant cell growth inhibition to A431, SK-MEL-5 and SK-MEL-28 cells in a time- and concentration-dependent manner. In addition, as a result of checking the shape of skin cancer cells according to SCL-EtOH treatment, it was observed that as the concentration increased, the number of normally attached and growing cells decreased and the shape of the cells changed. Colony formation was significantly reduced in a concentration-dependent manner in JB6 Cl41 cells treated with EGF or TPA. Flow cytometry analysis with propidium iodide(PI) staining showed that SCL-EtOH induced the G2/M phase arrest. We further confirmed the decrease in Cyclin B1 expression and increase in p27 expression associated with the G2/M phase of the cell cycle through western blot analysis. Flow cytometry analysis confirmed that SCL-EtOH induced cell apoptosis. Furthermore, through Western blot analysis, it was observed that the expression of cleaved-caspase-7, which is related to apoptosis, increased. Finally, it was confirmed that the expression of COX-2, an inflammatory marker protein, decreased in a concentration-dependent manner with SCL-EtOH. Conclusions : Through the above results, we have established a basis for applying SCL to the treatment of skin cancer.

Anti-aging Effect of Akebia quinata Decaisne Ethanol Extract (으름덩굴 에탄올 추출물의 항노화 효과)

  • Yu Jin Kim;Soon Hyun Kwon;Ji Hyun Song;So Mi Lee;Yong Min Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • Skin aging progresses due to external factors such as ultraviolet rays and infections. These factors cause skin fibroblasts to secrete proteolytic enzymes, matrix metalloproteinases (MMPs). MMPs induce the degradation of collagen located in the extracellular matrix, directly influencing aging. The stems of Akebia quinata Decaisne have been reported to have antioxidant and anti-inflammatory effects. However, the anti-aging effect of Akebia quinata Decaisne stem ethanol extract (AQSEE) is not known. Therefore, we studied the TNF-α-induced MMP-1 inhibitory effect in human fibroblasts. When the cell viability of AQSEE was confirmed through MTT asaay, it showed no toxicity up to 400 ㎍/mL. The inhibition of MMP-1 mRNA and protein secretion was confirmed through RT-qPCR and ELISA, and results showed a significant decrease at concentrations of 100, 200, 400 ㎍/mL. We also confirmed by Western blotting that phosphorylation of MAPKs signaling pathway and transcription factors was reduced. As a result, phosphorylation of p38, c-Jun, p65 was significantly decreased at all concentrations. DPPH and ABTS assays were performed to confirm the radical scavenging ability of AQSEE, and the results showed a significant decrease at all concentrations. The results of this study confirmed the MMP-1 inhibitory effect and radical scavenging ability, which suggests that it can be used as an anti-aging substance.

Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties

  • Hong Kyu Lee;Yun-Jung Na;Su-Min Seong;Dohee Ahn;Kyung-Chul Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.368-378
    • /
    • 2024
  • Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.