DOI QR코드

DOI QR Code

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K. (Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Alfhili, Mohammad A. (Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Alharbi, Sami O. (Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Alhusayni, Shady M. (Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Abudawood, Manal (Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Aljaser, Feda S. (Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Al-Sheikh, Yazeed A. (Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University)
  • Received : 2021.12.17
  • Accepted : 2022.04.07
  • Published : 2022.07.01

Abstract

There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Keywords

Acknowledgement

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding this research project through the Vice Deanship of Scientific Research Chairs (DSRVCH).

References

  1. Ziada AS, Smith MR, Cote HCF. Updating the free radical theory of aging. Front Cell Dev Biol. 2020;8:575645. https://doi.org/10.3389/fcell.2020.575645
  2. Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1:10-21 https://doi.org/10.2174/1874609810801010010
  3. Shinmura K. Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. Oxid Med Cell Longev. 2013;2013:528935. https://doi.org/10.1155/2013/528935
  4. Lu J, Holmgren A. Thioredoxin system in cell death progression. Antioxid Redox Signal. 2012;17:1738-1747. https://doi.org/10.1089/ars.2012.4650
  5. Kong Y, Trabucco SE, Zhang H. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip Top Gerontol. 2014;39:86-107. https://doi.org/10.1159/000358901
  6. Kwon SM, Hong SM, Lee YK, Min S, Yoon G. Metabolic features and regulation in cell senescence. BMB Rep. 2019;52:5-12. https://doi.org/10.5483/BMBRep.2019.52.1.291
  7. Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther. 2019;193:31-49. https://doi.org/10.1016/j.pharmthera.2018.08.006
  8. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436-453. https://doi.org/10.1016/j.tcb.2018.02.001
  9. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23:303-314. https://doi.org/10.1016/j.cmet.2015.11.011
  10. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530:184-189. https://doi.org/10.1038/nature16932
  11. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, Mazula DL, Brooks RW, Fuhrmann-Stroissnigg H, Pirtskhalava T, Prakash YS, Tchkonia T, Robbins PD, Aubry MC, Passos JF, Kirkland JL, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532. https://doi.org/10.1038/ncomms14532
  12. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, Grellscheid SN, Hoeijmakers JHJ, Barnhoorn S, Mann DA, Bird TG, Vermeij WP, Kirkland JL, Passos JF, von Zglinicki T, Jurk D. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691. https://doi.org/10.1038/ncomms15691
  13. Byun HO, Lee YK, Kim JM, Yoon G. From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep. 2015;48:549-558. Erratum in: BMB Rep. 2016;49:641-650. https://doi.org/10.5483/BMBRep.2015.48.10.122
  14. Dong D, Cai GY, Ning YC, Wang JC, Lv Y, Hong Q, Cui SY, Fu B, Guo YN, Chen XM. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling. Oncotarget. 2017;8:16109-16121. https://doi.org/10.18632/oncotarget.14884
  15. Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127
  16. Nacarelli T, Sell C. Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol. 2017;455:83-92. https://doi.org/10.1016/j.mce.2016.08.049
  17. Birch J, Passos JF. Targeting the SASP to combat ageing: mitochondria as possible intracellular allies? Bioessays. 2017;39:1600235. https://doi.org/10.1002/bies.201600235
  18. Byun HO, Jung HJ, Seo YH, Lee YK, Hwang SC, Hwang ES, Yoon G. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) β1-induced senescence. Exp Cell Res. 2012;318:1808-1819. https://doi.org/10.1016/j.yexcr.2012.04.012
  19. Byun HO, Jung HJ, Kim MJ, Yoon G. PKCδ phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-β1-induced senescence. Free Radic Res. 2014;48:1100-1108. https://doi.org/10.3109/10715762.2014.929120
  20. Victorelli S, Passos JF. Reactive oxygen species detection in senescent cells. Methods Mol Biol. 2019;1896:21-29. https://doi.org/10.1007/978-1-4939-8931-7_3
  21. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010;6:347. https://doi.org/10.1038/msb.2010.5
  22. Correia-Melo C, Passos JF. Mitochondria: are they causal players in cellular senescence? Biochim Biophys Acta. 2015;1847:1373-1379. https://doi.org/10.1016/j.bbabio.2015.05.017
  23. Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505-531. https://doi.org/10.1146/annurev-physiol-021115-105011
  24. Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X, Wei X, Ding Y, Huang N, Qin J, Zhang J, Wang S, Gao F, Chrzanowska-Lightowlers ZM, Xiang R, Xiao H. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy. 2017;13:99-113. https://doi.org/10.1080/15548627.2016.1247143
  25. Habiballa L, Salmonowicz H, Passos JF. Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic Biol Med. 2019;132:3-10. https://doi.org/10.1016/j.freeradbiomed.2018.10.417
  26. Studencka M, Schaber J. Senoptosis: non-lethal DNA cleavage as a route to deep senescence. Oncotarget. 2017;8:30656-30671. https://doi.org/10.18632/oncotarget.15693
  27. Ghneim HK, Al-Sheikh YA. The effect of aging and increasing ascorbate concentrations on respiratory chain activity in cultured human fibroblasts. Cell Biochem Funct. 2010;28:283-292. https://doi.org/10.1002/cbf.1653
  28. Ghneim HK. Selenium concentrations for maximisation of thioredoxin reductase 2 activity and upregulation of its gene transcripts in senescent human fibroblasts. Antioxidants (Basel). 2017;6:83. https://doi.org/10.3390/antiox6040083
  29. Ghneim HK. The effect of Echis coloratus venom on biochemical and molecular markers of the antioxidant capacity in human fibroblasts. Libyan J Med. 2017;12:1304515. https://doi.org/10.1080/19932820.2017.1304515
  30. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357-363. https://doi.org/10.1016/S0076-6879(94)33041-7
  31. Al-Sheikh YA, Ghneim HK. 'The effect of micronutrients on superoxide dismutase in senescent fibroblasts'. Cell Biochem Funct. 2011;29:384-393. https://doi.org/10.1002/cbf.1761
  32. Ghneim HK, Alshebly MM. Biochemical markers of oxidative stress in Saudi women with recurrent miscarriage. J Korean Med Sci. 2016;31:98-105. https://doi.org/10.3346/jkms.2016.31.1.98
  33. Ghneim HK. The kinetics of the effect of manganese supplementation on SOD2 activity in senescent human fibroblasts. Eur Rev Med Pharmacol Sci. 2016;20:1866-1880.
  34. Ghneim HK, Al-Sheikh YA. Effect of selenium supplementation on glutathione peroxidase and catalase activities in senescent cultured human fibroblasts. Ann Nutr Metab. 2011;59:127-138. https://doi.org/10.1159/000334069
  35. Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484-490. https://doi.org/10.1016/S0076-6879(85)13062-4
  36. Hausladen A, Fridovich I. Measuring nitric oxide and superoxide: rate constants for aconitase reactivity. Methods Enzymol. 1996;269:37-41. https://doi.org/10.1016/S0076-6879(96)69007-7
  37. Goncalves S, Paupe V, Dassa EP, Briere JJ, Favier J, Gimenez-Roqueplo AP, Benit P, Rustin P. Rapid determination of tricarboxylic acid cycle enzyme activities in biological samples. BMC Biochem. 2010;11:5. https://doi.org/10.1186/1471-2091-11-5
  38. Lai JC, Cooper AJ. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem. 1986;47:1376-1386. https://doi.org/10.1111/j.1471-4159.1986.tb00768.x
  39. Tan AK, Ramsay RR, Singer TP, Miyoshi H. Comparison of the structures of the quinone-binding sites in beef heart mitochondria. J Biol Chem. 1993;268:19328-19333. https://doi.org/10.1016/S0021-9258(19)36517-2
  40. Ghneim HK, Al-Sheikh YA, Aboul-Soud MA. The effect of Walterinnesia aegyptia venom proteins on TCA cycle activity and mitochondrial NAD+-redox state in cultured human fibroblasts. Biomed Res Int. 2015;2015:738147.
  41. Akiel M, Alsughayyir J, Basudan AM, Alamri HS, Dera A, Barhoumi T, Al Subayyil AM, Basmaeil YS, Aldakheel FM, Alakeel R, Ghneim HK, Al-Sheikh YA, Alraey Y, Asiri S, Alfhili MA. Physcion induces hemolysis and premature phosphatidylserine externalization in human erythrocytes. Biol Pharm Bull. 2021;44:372-378. https://doi.org/10.1248/bpb.b20-00744
  42. Chao CH, Wu WC, Lai YC, Tsai PJ, Perng GC, Lin YS, Yeh TM. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15:e1007625. https://doi.org/10.1371/journal.ppat.1007625
  43. Alfhili MA, Hussein HAM, Park Y, Lee MH, Akula SM. Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways. Apoptosis. 2021;26:96-110. https://doi.org/10.1007/s10495-020-01650-0
  44. Ghneim HK, Al-Sheikh YA, Alshebly MM, Aboul-Soud MA. Superoxide dismutase activity and gene expression levels in Saudi women with recurrent miscarriage. Mol Med Rep. 2016;13:2606-2612. https://doi.org/10.3892/mmr.2016.4807
  45. Aljaser FS, Ghneim HK, ALshubaily MM, Abudawood M, Almajed F, Fatima S, ALsheikh YA. Glutathione and oxidized nicotinamide adenine dinucleotide NAD+ redox status in plasma and placental tissue of Saudi patients with intrauterine growth restriction. Saudi Med J. 2021;42:491-498. https://doi.org/10.15537/smj.2021.42.5.20200685
  46. Zeng H, Uthus EO, Combs GF Jr. Mechanistic aspects of the interaction between selenium and arsenic. J Inorg Biochem. 2005;99:1269-1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006
  47. Tang MJ, Tannen RL. Relationship between proliferation and glucose metabolism in primary cultures of rabbit proximal tubules. Am J Physiol. 1990;259(3 Pt 1):C455-C461. https://doi.org/10.1152/ajpcell.1990.259.3.C455
  48. Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem. 2004;279:26475-26480. https://doi.org/10.1074/jbc.M313973200
  49. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol. 2011;93:111-124. https://doi.org/10.1016/j.pneurobio.2010.10.005
  50. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729-740. https://doi.org/10.1038/nrm2233
  51. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192:547-556. https://doi.org/10.1083/jcb.201009094
  52. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239-247. https://doi.org/10.1038/35041687
  53. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  54. Sharma P, Mongan PD. Ascorbate reduces superoxide production and improves mitochondrial respiratory chain function in human fibroblasts with electron transport chain deficiencies. Mitochondrion. 2001;1:191-198. Erratum in: Mitochondrion. 2001;1:293. https://doi.org/10.1016/S1567-7249(01)00016-2
  55. Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA. Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol. 2005;285:316-329. https://doi.org/10.1016/j.ydbio.2005.06.038
  56. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S. Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta. 1994;1226:73-82. https://doi.org/10.1016/0925-4439(94)90061-2
  57. Gupta S, Cheng H, Mollah AK, Jamison E, Morris S, Chance MR, Khrapunov S, Brenowitz M. DNA and protein footprinting analysis of the modulation of DNA binding by the N-terminal domain of the Saccharomyces cerevisiae TATA binding protein. Biochemistry. 2007;46:9886-9898. https://doi.org/10.1021/bi7003608
  58. Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997;77:591-625. https://doi.org/10.1152/physrev.1997.77.3.591
  59. Conrad M, Schneider M, Seiler A, Bornkamm GW. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol Chem. 2007;388:1019-1025. https://doi.org/10.1515/bc.2007.130
  60. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. https://doi.org/10.1152/physrev.00018.2001
  61. Ruder EH, Hartman TJ, Blumberg J, Goldman MB. Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update. 2008;14:345-357. https://doi.org/10.1093/humupd/dmn011
  62. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev. 2019;99:1047-1078. https://doi.org/10.1152/physrev.00020.2018
  63. Sacitharan PK. Ageing and osteoarthritis. Subcell Biochem. 2019;91:123-159. https://doi.org/10.1007/978-981-13-3681-2_6
  64. Belikov AV. Age-related diseases as vicious cycles. Ageing Res Rev. 2019;49:11-26. https://doi.org/10.1016/j.arr.2018.11.002
  65. Servier Medical Art. Intracellular components [Internet]. Servier Medical Art [cited 2022 Mar 15]. Available from: https://smart.servier.com.