• Title/Summary/Keyword: antimicrobial filter

Search Result 31, Processing Time 0.023 seconds

Survival of Microorganisms on Antimicrobial Filters and the Removal Efficiency of Bioaerosols in an Environmental Chamber

  • Kim, Sung Yeon;Kim, Misoon;Lee, Sunghee;Lee, JungEun;Ko, GwangPyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1288-1295
    • /
    • 2012
  • Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) $SiO_2$, ZnO, and $Al_2O_3$, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of $25^{\circ}C$ and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.

Air sterilization using filter and air ions: A review (필터와 이온을 이용한 공기살균법 연구동향)

  • Woo, Chang Gyu;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.73-80
    • /
    • 2016
  • Bioaerosol inactivation becomes important as people recognize the significance on the health effects of bioaerosols. There are several ways to inactivate such bioaerosols such as antimicrobial filters, UV, etc. For the on-filter-inactivation, proper antimicrobial materials coating should be applied. Recently, air ions are adopted to effectively reduce germ and virus activity. Limitations arise when each method is applied separately. Coating materials can experience chemical instability over time and temperature. Ionizers can generate ozone to prepare high ion concentrations. Combinations of developed techniques to enhance the inactivation efficiency were suggested. Researches on the air sterilization are reviewed and outlook is highlighted. Proper techniques such as combinations of filter material coating and air ion generation can be used to make air quality better for human living.

The Antimicrobial Activity of Chungyulsodokeum and Its Composition Oriental Medicines (淸熱消毒飮 및 구성약물의 항균활성에 관한 실험적 연구)

  • Wang Hui-wen;Jee Seon-young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.1
    • /
    • pp.143-153
    • /
    • 2004
  • Antimicrobial activities against Streptococcus mutans, Candida albicans, Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus were assayed through the hot water extracts and the ethanol extracts from Chungyulsodokeum and its composition oriental medicines. The stains were incubated on culture medium and activated. We observed the size of inhibition zone on the strains that is incubated in strilized filter paper disc with various concentration extracts of Chungyulsodokeum and its composition 1. The extracts of Chungyulsodokeum, Coptidis Rhizoma, Paeoniae Radix, Glycyrrhizae Radix, Gardeniae Fructus showed antimicrobial activities against Staphylococcus aureus. 2. The extracts of Chungyulsodokeum, Coptidis Rhizoma, Paeoniae Radix, Forsythiae Fructus Ghycyrrhizae Radix, showed antimiaobial activities against Staphylococcus epidermidis. 3. The extracts of Chungyulsodokeum, Coptidis Rhizoma, Paeoniae Radix, Glycyrrhizae Radix, showed antimicrobial activities against Streptococcus mutans. 4. The extract of Coptidis Rhizoma showed antimicrobial activities against Candida albicans. 5. None of the extracts showed antimicrobial activities against Escherichia coli. We observed antimicrobial activities of Chungyulsodokeum and its composition against Streptococcus mutans, Staphylococcus epidermidis, Staphylococcus aureus.

  • PDF

Antimicrobial effect of topical local anesthetic spray on oral microflora

  • Srisatjaluk, Ratchapin L;Klongnoi, Boworn;Wongsirichat, Natthamet
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2016
  • Background: To evaluate the antimicrobial activity of lidocaine (LD) topical anesthetic spray against oral microflora. Methods: Antimicrobial effects of 10% LD spray were assessed against six bacterial cultures obtained from volunteers: Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Streptococcus salivarius, Streptococcus pyogenes, and Streptococcus sanguinis. The filter papers contained $50-{\mu}l$ LD, brain heart infusion (BHI) broth, or 0.2% chlorhexidine. Papers were placed on the cultured blood plates for 1-3 min. After the papers were removed, plates were incubated for 24 h. Bacterial growth on the contact areas was recorded as the antimicrobial score. The split mouth technique was use in for sample collection in clinical study. Filter papers soaked with either BHI broth or LD were placed on the right or left buccal mucosa for 1 min, and replaced with other papers to imprint biofilms onto the contact areas. Papers were placed on blood plates, incubated for 24 h, and antimicrobial scores were determined. Experiments were conducted for 2- and 3-min exposure times with a 1-day washout period. Results: LD exhibited bactericidal effects against E. coli, S. sanguinis, and S. salivarius within 1 min but displayed no effect against S. aureus, E. faecalis, and S. pyogenes. The antimicrobial effect of LD on oral microflora depended upon exposure time, similar to the results obtained from the clinical study (P < 0.05). LD showed 60-95% biofilm reduction on buccal mucosa. Conclusions: Antimicrobial activity of 10% LD topical anesthetic spray was increased by exposure time. The 3 min application reduced oral microflora in the buccal mucosa.

Manufacture of Sterilizing Media with Shell Powder and It's Application to the Filter of Water Clarifier (패각분말을 이용한 살균성 메디아의 제조 및 정수기용 필터에 대한 응용)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1027-1034
    • /
    • 2006
  • Antimicrobial powder was made by exchanging silver ion on calcined oyster shell. On the purpose of application to water clarifier, bail-type media mixed with antimicrobial powder and $0{\sim}30%$ white kaoline were made. The sterilization effect, pore size distribution and zeta potential was tested to indicate the condition for the media of water clarifier. From these tests, it was confirmed that this media have an excellent sterilization power on $G^-\;and\;G^+$ germs. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the media also increased. The surface pore size decreased with the concentration of silver ion and 20% more white kaoline ratio. Consequently, mixing ratio of white kaoline would appear to indicate the optimun condition as media have sterilization power.

Dectection of the Bacteriocin from Lactic Acid Bacteria Involved in Kimchi Fermentation (김치 발효에 관여하는 젖산균에서의 Bacteriocin의 검색)

  • Cho, Jae-Sun;Jung, Sung-Je;Kim, Young-Mok;Chun, Uck-Han
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.700-706
    • /
    • 1994
  • Lactic acid bacteria in Kimchi fermentation were tested for inhibitory activity against Gram positive bacteria and Gram negative bacteria. The Lactobacillus brevis (KCCM 35464) was found to produce a antimicrobial substance. It showed relatively wide range of inhibition spectrum against gram positive and gram negative bacteria and maintained the inhibitory activity between pH 4.0 and pH 9.0. The antimicrobial substance was obtained in the stationary growth phase and was purified by gel chromatography. The inhibitory effect of the antimicrobial substance on sensitive bacterial strains was determined by filter paper test. The activity of antimicrobial substa- nce was stable at 75$\circ$C. On the basis of its electrophoretic pattern is SDS-PAGE, antimicrobial substance appeared as a single band of 59 KDalton.

  • PDF

The Removal of Indoor Suspended Microorganisms of Eco-friendly Antimicrobial Copper Net Filter (친환경소재인 항균동망 필터의 실내 부유 미생물 제거 연구)

  • Kim, Dong-Woo;Je, Dong-Hyun;Ji, Keunho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 2018
  • As the lives of people have improved, the demand for improved indoor air quality has increased. Various methods are used to remove biological air pollutants, such as UV/photocatalytic devices and ozone generators. However, these methods have disadvantages such as energy consumption, high corrosivity and toxicity. To overcome these disadvantages, an antibacterial copper filter was fabricated and its antimicrobial activity was then tested against two fungi (P. pinophilum, C. globosum) and one bacteria (S. aureus) Moreover, the ability to remove suspended microorganisms was tested step by step from the chamber stage to the air conditioning system. The results revealed 100% antimicrobial activity after 24 hours for the two fungi, while this value was 99.9% after 18 hours for the bacteria. Moreover, the antibacterial activity was higher when the chamber and air purifier were used than was obtained using a general antibacterial HEPA filter. Also, as a filter for system air conditioner, the antibacterial activity was lowered in offices and hospitals. In conclusion, the copper filter was found to have sufficient antibacterial activity for use as an antibacterial filter; however, further research on its preparation methods and materials is warranted.

Antibacterial Activity of Zein Hydrolysate with Pepsin (Pepsin에 의한 Zein 가수분해물의 항균활성)

  • Kang, Yoon-Jung;Yi, Sang-Duk;Lee, Gyu-Hee;Oh, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.127-131
    • /
    • 2006
  • A study was carried out to produce antimicrobial peptides from zein treated with pretenses of six kinds. Among the pretenses of six kinds, zein hydrolysate treated with pepsin showed the highest antimicrobial activity. The zein hydrolysate with pepsin was fractionated with membrane filter (30,000 10,000 and 3,000 molecular weight cut-off) and antimicrobial activity was measured for each fractions. Antimicrobial activity appeared greatly in the fraction below 3,000 (molecular weight cut-off) . The fraction was re-fractionated by HPLC and substances of two peaks collected as a sample to measure antimicrobial activity. All of both peaks showed the antimicrobial activity but 1st peak exhibited a consistently higher antimicrobial activity than 2nd peak. Minimum inhibitory concentrations (MIC) were between 2.5 and 3.0 mg/mL. The peptide was heat-stable since antimicrobial activity was maintained after treated with heat for 20 min at $121^{\circ}C$. N-terminal amino acid sequence of peptide fractionated by HPLC was leucine, glutamic acid, proline, phenylalanine, aspartic acid and argenine. These results indicated that peptide isolated from zein hydrosate with pepsin can use as a natural preservative ingredient in food industry.

Application and Antimicrobial Activities of Casein Hydrolysates Treated with Asp.oryzae Protease (Casein 효소 가수분해물의 항균 활성과 그 응용)

  • Lee Hye-Jin;Yi Sang-Duk;Oh Man-Jin
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • This study was carried out to produce antimicrobial peptides from casein using various proteases. To examine whether the hydrolysis of casein would produce antimicrobial substance and the application as natural antimicrobial material, casein was hydrolyzed by five different proteases. The casein hydrolysate was fractionated with regenerated membrane filter (molecular weight cut-off 30,000 10,000 and 3,000) and antimicrobial activity was measured for each fraction. Antimicrobial activity appeared great in the fraction below 3,000 molecular weight The fraction was re-fractionated by high performance liquid chromatography and substance of main peak (retention time: 13.2 min) collected was used as a sample to measure antimicrobial activity. Among the casein hydrolysates produced by protease, antimicrobial activity was observed the greatest in hydrolysate treated with Aspergillus oryzae protease. The minimum inhibition concentrations of the Asp. oryzae protease hydrolysate were 1.0-1.5 mg/mL. This hydrolysate was a heat stable peptide since antimicrobial activity was maintained after treating with heat for 20 min at $121^{\circ}C$.

Stability and Antibacterial Activity of Bacteriocins Produced by Bacillus thuringiensis and Bacillus thuringiensis ssp. kurstaki

  • Jung, Woo-Jin;Mabood, Fazli;Souleimanov, Alfred;Zhou, Xiaomin;Jaoua, Samir;Kamoun, Fakher;Smith, Donald L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1836-1840
    • /
    • 2008
  • Bacteriocins are antimicrobial peptides that are produced by bacteria and toxic to bacterial strains closely related to the producer strain. It has previously been reported that Bacillus thuringiensis strain NEB17 and Bacillus thuringiensis subsp. kurstaki BUPM4 produce the bacteriocins thuricin 17 (3,162 Da) and bacthuricin F4 (3,160.05 Da), respectively. Here, we demonstrate that these bacteriocins have functional similarities and show a similar spectrum of antimicrobial activities against indicator strains. We also studied the effects of sterilization methods on the recovery and biological activities of these bacteriocins. They were completely degraded by autoclaving and the two were similarly affected by the tested filter membranes. Polyvinylidene fluoride (PVDF), polyestersulfone (PES), and cellulose acetate (CA) are suitable for filter sterilization of these bacteriocins. The two bacteriocins were stable across a range of storage conditions. These data will facilitate their utilization in food preservation or agricultural applications.