• 제목/요약/키워드: antifungal bacteria

검색결과 291건 처리시간 0.025초

Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom

  • Imtiaj, Ahmed;Jayasinghe, Chandana;Lee, Geon-Woo;Lee, Tae-Soo
    • Mycobiology
    • /
    • 제35권4호
    • /
    • pp.210-214
    • /
    • 2007
  • Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied $5{\sim}300\;mg/ml$ concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi.

메주로부터 분리한 Bacillus polyfermenticus CJ6의 항진균 활성 (Antifungal Activity of Bacillus polyfermenticus CJ6 Isolated from Meju)

  • 정지혜;장해춘
    • 한국식품영양과학회지
    • /
    • 제38권4호
    • /
    • pp.509-516
    • /
    • 2009
  • 메주로부터 곰팡이 및 세균 등에 생육 저해활성을 나타내는 균주 B. polyfermenticus CJ6을 분리 동정하였다. 분리 균주 B. polyfermenticus CJ6는 2단 대수기를 나타내는 생육 곡선상 특이점을 나타내었으며 배양 30시간 이후부터 최대 활성을 나타내었고 사멸기 이후 활성이 다소 감소되었으나 120시간까지 활성을 유지하였다. B. polyfermenticus CJ6의 항진균 활성 물질은 $70^{\circ}C$ 이상에서 활성이 감소되었으나 $121^{\circ}C$에서 15분간 열처리 시 역가가 완전히 소실되지 않았다. pH 안정성 실험에서는 pH $3.0{\sim}9.0$ 구간에서 안정한 활성을 나타내었으며, 각종 효소에 대한 영향에서 항진균 활성물질은 proteinase K, protease, ${\alpha}$-chymotrypsin 등의 단백분해효소 처리로 역가를 상실하거나 일부 감소되어 단백질성 물질임을 추정하였다. 균주의 항진균 활성 물질을 $C_{18}$ Sep-Pak column으로 부분 정제한 후 Tricine-SDS-PAGE 및 direct detection 실험을 통하여 분자량이 약 1.4 kDa의 물질임을 확인하였다. B. polyfermenticus CJ6가 생산하는 항진균 활성 물질은 기존에 거의 보고되지 않은 B. polyfermenticus 유래의 단백질성 항진균 활성 물질로서 천연보존제 및 천연항균제재로 사용이 기대되며, 이를 위하여 항진균 활성 물질들의 정제 및 구조분석 등의 연구가 필요하다.

Screening and Identification of an Antifungal Pseudomonas sp. That Suppresses Balloon Flower Root Rot Caused by Rhizoctonia solani

  • Ryu, Jae-San;Lee, Sang-Dae;Lee, Young-Han;Lee, Seong-Tae;Kim, Dong-Kil;Cho, Soo-Jeong;Park, Sang-Ryeol;Bae, Dong-Won;Park, Ki-Hun;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.435-440
    • /
    • 2000
  • A pathogenic fungus causing balloon flower root rot (Platycodon grandiflorum) was isolated from naturally infected roots. The microbial characteristics of the isolated microorganism were similar to those of Rhizoctonia solani. About 500 bacterial species from field soils were screened for a biological agent against the above-mentioned putative pathogen, and several bacteria with the antifungal activity were isolated. Among them, the isolated JS2 was identified as Pseudomonas aeruginosa. This strain showed a broad spectrum of antifungal activity potentially. When the antifungal substance was purified from a broth culture of JS2, it was identified as 2,4-diacetylphloroglucinol (Phl).

  • PDF

The Synthesis of 6-(N-Arylamino)-7-Chloro-5,8-Quinolinedione Derivatives for Evaluation of Antifugal Activities

  • Ryu, Chung-Kyu;Kim, Hee-Jeong
    • Archives of Pharmacal Research
    • /
    • 제17권3호
    • /
    • pp.139-144
    • /
    • 1994
  • A series of 6-(N-aylamono)-7-chloro-5, 8-quinolinedione derivatives was newly synthesized for the evaluation of antifugal activities. 5-Amino-8-hydroxy-quinoline (II) was treated with $KCLO_3$ in HCl to give 6,7-dichloro-5,8-quinolinediones (III). 6-(N-Arylamino)-7-chloro5,8-quinolinediones 1-13 were prepared by regioselective nucleophilic substitution of III with arylamines. In the presence of $CeCl_3$, the N-arylamono groups were introduced at the 6-position of 5,8-quinolinedione ring by the regioselective substitution. These derivatives 1-12 were tested for natifungal and also antibacterial activites, in vitro, against Canadida albicans, Aspergillus nier, Tricophyton mentagrophytes, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coil. The MIC values were determined by the two-fold agar/steak dilution method. Newly obtained 6-(N-arylamino)-7-chloro5,8-quinolinedione derivatives showed potent antifungal and antibacterial activities. Among these derivatives, 1,3,5,7,8 and 9 showed more potent antifungal activities than fluconazole and griseofulvin. Also most of derivatives were found to be more active than ampicillin against gram-positive bacteria. 1 and 7 showed the very potent antifungal activities. 1 was the most efective in preventing the growth of Candida albicans, Aspergillus niger, Tricophyton mentagrophytes, Bacillus subtills and Staphylococcus aureus at MIC $1.6\;\mu{g/ml}$.

  • PDF

작물병원 진균에 대하여 항균 활성을 보이는 Paenibacillus polymyxa DY5의 동정 및 특성 (Identification and Characterization of Paenibacillus polymyxa DY5 with Antifungal Activity against Crop Pathogenic Fungi)

  • 김효윤;원항연;김완규;유관희
    • 한국균학회지
    • /
    • 제37권2호
    • /
    • pp.181-188
    • /
    • 2009
  • A Gram-positive, rod-shaped bacteria named DY5 was isolated from a peat sample collected from Daeam mountain in Korea. The culture filtrate of the bacterial isolate DY5 showed a broad spectrum of antifungal activity on various crop pathogenic fungi such as Trichoderma koningii, Fusarium oxysporum, Colletotrichum gloeosporioides, Sclerotinia sclerotiorum, Rhizoctonia solani AG-1(IA) For the identification of the DY5, morphological, biochemical, API 50 CHB test, analysis of fatty acid and molecular phylogenetic approaches were performed. The DY5 was found to be a member of the genus Paenibacillus on the basis of morphological and biochemical analysis. The 16S rRNA of DY5 showed high similarity(98%) with Paenibacillus polymyxa. On the basis of these results, the DY5 was identified as Paenibacillus polymyxa. Antifungal substance of the DY5 would be mild alkaline proteine molecule. The DY5 seems to have a great potential to be a biocontrol agent against various crop pathogens.

Production of Phenyl Lactic Acid (PLA) by Lactic Acid Bacteria and its Antifungal Effect

  • Song, June-Seob;Jang, Joo-Yeon;Han, Chang-Hoon;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.125-131
    • /
    • 2015
  • Phenyllactic acid (PLA) which is known as antimicrobial compound can be synthesized through the reduction of phenylpyruvic acid (PPA) by lactate dehydrogenase (LDH) of lactic acid bacteria (LAB). LAB producing PLA was isolated from Korea Kimchi and identified to Lactobacillus plantarum SJ21 by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. plantarum SJ21 was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against four fungal pathogens (Rhizoctonia solani, Aspergillus oryzae, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23mM in CFS when L. plantarum SJ21 was grown in MRS broth containing 5mM PPA for 16 h. PLA production also could be promoted by the supplement of PPA and phenylalanine in MRS broth, but inhibited by the supplement of 4-hydroxyphenylpyruvic acid and tyrosine as precursors. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. plantarum SJ21 with average growth inhibitions ranging from 27.32% to 69.05% (p<0.005), in which R. solani was the most sensitive to 69.05% and followed by B. cinerea, C. aculatum, and A. oryzae. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range from $0.35mg\;mL^{-1}$ (2.11 mM) to $0.7mg\;mL^{-1}$ (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens was not affected by heating or protease treatment. However, pH modification in CFS to 6.5 caused an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS were caused by acidic compounds like PLA or organic acids rather than proteins or peptides molecules.

Antifungal Effect of Phenyllactic Acid Produced by Lactobacillus casei Isolated from Button Mushroom

  • Yoo, Jeoung Ah;Lee, Chan-Jung;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제14권4호
    • /
    • pp.162-167
    • /
    • 2016
  • Lactic acid bacteria (LAB) producing phenyllactic acid (PLA), which is known as antimicrobial compound, was isolated from button mushroom bed and the isolated LAB was identified to Lactobacillus casei by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. casei was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23 mM in CFS when L. casei was grown in MRS broth containing 5 mM phenylpyruvic acid as precursor for 16 h. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. casei with average growth inhibitions ranging from 34.58% to 65.15% (p < 0.005), in which R. solani was the most sensitive to 65.15% and followed by C. aculatum, and B. cinerea. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range of 0.35 mg mL-1 (2.11 mM) to 0.7 mg mL-1 (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens were not affected by the heating or protease treatment. However, pH modification in CFS to 6.5 resulted in an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS was caused by acidic compounds like PLA or organic acids rather than protein or peptide molecules.

버섯 중 항균물질의 검색 및 개발에 관한 연구 -그람음성균 및 곰팡이에 대한 항균물질의 검색(2보)- (Study on the Screening and Development of Antibiotics in the Mushrooms -The Screening of Bacterial and Fungal Antibiotics in Basidiomycetes (II)-)

  • 박상신;이갑득;민태진
    • 한국균학회지
    • /
    • 제23권2호통권73호
    • /
    • pp.176-189
    • /
    • 1995
  • 98종의 한국산버섯의 그람음성균에 대한 항균활성을 검색한 결과 20종의 버섯의 80% 에탄올(E) 및 증류수(H) 추출물이 Klebsiella pneumoniae, Proteus mirabilis, Serratia marcescens, Shiegella sonnei, Shiegella dysenteiae, Salmonella typhi, Salmonella typhimurium 및 Pseudomonas aeruginosa에 대하여 항균력을 나타내며, 특히 R. sinuatus, S. luteus, B. umbriniporus, 그리고 A. tabescens의 E 추출물은 다른 버섯에 비하여 여러 종류의 그람음성균에 대하여 다양한 항균활성을 보였다. Abortiporus biennis, Phellinus gilvus, 및 Polyporus dispansus의 E 추출물은 S. typhi에 대하여 강력한 항균력을 나타내었으며 이들의 MIC는 $10\;{\mu}g/ml$이었다. 25종 버섯의 곰팡이균에 대한 항균활성을 검색한 결과 Armillariella tabescens의 E 추출물이 Trichopyton mentagrophytes에 대하여 항균력을 가지며 이의 MIC는 $300\;{\mu}g/ml$이었다.

  • PDF

고추역병 길항미생물 Bacillus subtilis AH18과 Bacillus licheniformis K11의 토양미생물 생태에 미치는 영향 (Effects of Phytophthora Blight-antagonistic Microorganisms Bacillus subtilis AH18 and Bacillus licheniformis K11 on the Soil Microbial Community)

  • 박기춘;임종희;김상달;이영근
    • Journal of Applied Biological Chemistry
    • /
    • 제52권3호
    • /
    • pp.121-125
    • /
    • 2009
  • 고추역병에 대한 길항미생물로 선발된 Bacillus subtilis AH18과 Bacillus licheniformis K11의 토양미생물 생태에 미치는 영향을 조사하기 위하여 이들 미생물을 단독 또는 복합으로 토양에 처리한 후 토양미생물상의 변화를 관찰하였다. 토양미생물 생태의 변화는 토양에서 인지질 지방산을 추출한 후 전체 지방산과 지표 지방산의 상대적 비율로 분석하였다. 전체적 인지질 지방산 구성과 각 지표 지방산 분석에 의해서 B. subtilis AH18 처리구는 무처리 대조구와 완전히 구분되었다. 전체 토양미생물상을 B. subtilis AH18 처리가 바꾸었고 세균 비율을 감소시켰으며, 곰팡이세균 비율을 높였으며, 그램음성균/그램양성균의 비율을 낮추었으며, 혐기성균/호기성균의 비율은 증가시켰다. 또한 불량환경 적응성을 의미하는 cy19:0/18:$1{\omega}7c$ 지방산비율과 단불포화지방산/포화지방산 비율도 B. subtilis AH18 처리구가 증가시켰다. 이에 반하여 B. licheniformis K11 처리나 두 미생물의 동시 처리는 전술한 토양미생물 지표에 큰 영향을 미치지 않았다. 따라서 지방산 분석을 토양미생물상 분석에서 B. subtilis AH18의 단용처리는 미생물을 처리하지 않은 대조구에 비하여 토양미생물상을 뚜렷이 바꾸었지만, B. subtilis AH18가 B. licheniformis K11와 혼용되었을 때는 토양미생물상 변화에 미치는 영향이 적었다. 따라서 이들 두 미생물을 동시에 처리할 경우 고추역병 방제와 토양미생물 생태 보존의 두 목적을 동시에 이룰 수 있을 것으로 기대된다.

Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter

  • Lee, Seong Shin;Paradhipta, Dimas Hand Vidya;Lee, Hyuk Jun;Joo, Young Ho;Noh, Hyeon Tak;Choi, Jeong Seok;Ji, Keum Bae;Kim, Sam Churl
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1029-1037
    • /
    • 2021
  • Objective: This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. Methods: Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1×105 colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. Results: The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p<0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. Conclusion: This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility.