DOI QR코드

DOI QR Code

Effects of Phytophthora Blight-antagonistic Microorganisms Bacillus subtilis AH18 and Bacillus licheniformis K11 on the Soil Microbial Community

고추역병 길항미생물 Bacillus subtilis AH18과 Bacillus licheniformis K11의 토양미생물 생태에 미치는 영향

  • Park, Kee-Choon (Ginseng Research Division, Rural Development Administration) ;
  • Lim, Jong-Hui (Department of Applied Microbiology, College of Natural Resources, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology, College of Natural Resources, Yeungnam University) ;
  • Yi, Young-Keun (School of Bioresource Science, Andong National University)
  • 박기춘 (농촌진흥청 인삼과) ;
  • 임종희 (영남대학교 응용미생물학과) ;
  • 김상달 (영남대학교 응용미생물학과) ;
  • 이영근 (안동대학교 식물의학과)
  • Published : 2009.09.30

Abstract

We measured the influence of antifungal antagonists Bacillus subtilis AH18 and Bacillus licheniformis K11 on soil microbial community in microcosms. Both antifungal antagonists were confirmed to suppress hot pepper phytophthora blight. Phospholipid fatty acids (PLFA) were analyzed to investigate the soil microbial community. B. subtilis AH18 changed the total PLFA composition and bio-indicators of PLFA, compared with other treatments. B. subtilis AH18 decreased the proportion of bacteria and gram negative/gram positive bacteria, and increased the fungi/bacteria and anaerobic/aerobic microorganisms. In addition cy19:0/18:$1{\omega}7c$, which means adaptation to unfavorable environmental conditions, was increased by the application of B. subtilis AH18. On the other hand the inoculation of B. licheniformis K11 or combined inoculation of both antifungal strains did not affect soil microbial community. The suppression of phytophthora blight and preservation of indigenous soil microbial community may be achieved by the combined application of B. subtilis AH18 and B. licheniformis K11.

고추역병에 대한 길항미생물로 선발된 Bacillus subtilis AH18과 Bacillus licheniformis K11의 토양미생물 생태에 미치는 영향을 조사하기 위하여 이들 미생물을 단독 또는 복합으로 토양에 처리한 후 토양미생물상의 변화를 관찰하였다. 토양미생물 생태의 변화는 토양에서 인지질 지방산을 추출한 후 전체 지방산과 지표 지방산의 상대적 비율로 분석하였다. 전체적 인지질 지방산 구성과 각 지표 지방산 분석에 의해서 B. subtilis AH18 처리구는 무처리 대조구와 완전히 구분되었다. 전체 토양미생물상을 B. subtilis AH18 처리가 바꾸었고 세균 비율을 감소시켰으며, 곰팡이세균 비율을 높였으며, 그램음성균/그램양성균의 비율을 낮추었으며, 혐기성균/호기성균의 비율은 증가시켰다. 또한 불량환경 적응성을 의미하는 cy19:0/18:$1{\omega}7c$ 지방산비율과 단불포화지방산/포화지방산 비율도 B. subtilis AH18 처리구가 증가시켰다. 이에 반하여 B. licheniformis K11 처리나 두 미생물의 동시 처리는 전술한 토양미생물 지표에 큰 영향을 미치지 않았다. 따라서 지방산 분석을 토양미생물상 분석에서 B. subtilis AH18의 단용처리는 미생물을 처리하지 않은 대조구에 비하여 토양미생물상을 뚜렷이 바꾸었지만, B. subtilis AH18가 B. licheniformis K11와 혼용되었을 때는 토양미생물상 변화에 미치는 영향이 적었다. 따라서 이들 두 미생물을 동시에 처리할 경우 고추역병 방제와 토양미생물 생태 보존의 두 목적을 동시에 이룰 수 있을 것으로 기대된다.

Keywords

References

  1. Bakker PAHM, Glandorf DCM. Viebahn M, Ouwens TWM, Smit E, Leeflang P, Wernar K, Thomashow LS, Thomas-Oate JE, and van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-l-carboxylic acid and 2,4- diacctylphloroglucinol on the microf1ora of field grown wheat. Antonie Van Leeuwenhoek 81, 617-624 https://doi.org/10.1023/A:1020526126283
  2. Bardgett RD, Hobbs PJ, and Frostegard A (1996) Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fert Soils 22, 261-264 https://doi.org/10.1007/BF00382522
  3. Boland GJ and Kuykendall LD (1998) In Plant-Microbe Interactions and Biological Control. Marcel Dekker, New York, NY, U.SA.
  4. Borga P, Nilsson M, and Tunlid A (1994) Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty-acid analysis. Soil Bioi Biochem 26, 841-848 https://doi.org/10.1016/0038-0717(94)90300-X
  5. Bossio DA, Scow KM, Gunapala N, and Graham KJ (1998) Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36, 1-12 https://doi.org/10.1007/s002489900087
  6. Ekelund F, Olsson S, and Johansen A (2003) Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Bioi Biochem 35, 1507-1516 https://doi.org/10.1016/S0038-0717(03)00249-9
  7. Frostegard A and E Baath (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. BioI Fert Soils 22, 59-65 https://doi.org/10.1007/BF00384433
  8. Frostegard A, Tunlid A, and Baath E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59, 3605-3617
  9. Girlanda M, Perotto S, MoBnne-Loccoz Y, Bergero R, Lazzari A, Decofago G, Bonfante P, and Luppi AM (2001) Impact of biocontrol Pseudomonas fluorescens CHAO and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67, 1851-1864 https://doi.org/10.1128/AEM.67.4.1851-1864.2001
  10. Griffiths BS, Ritz K, Ebblewhite N, and Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil BioI Biochem 31, 145-153 https://doi.org/10.1016/S0038-0717(98)00117-5
  11. Johansen A and Olsson S (2005) Using Phospholipid Fatty Acid Technique to Study Short-Term Effects of the Biological Control Agent Pseudomonas fluorescens DR54 on the Microbial Microbiota in Barley Rhizosphere. Microb Ecol 49, 271-281 https://doi.org/10.1007/s00248-004-0135-2
  12. Li WH, Zhang CB, Jiang HB, Xin GR, and Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK. Plant Soil 281, 309-324 https://doi.org/10.1007/s11104-005-9641-3
  13. Peacock A D, Mullen MD, Ringelberg, DB, Tyler DD, Hedrick DB, Gale PM, and White DC (2001) Soil microbial community responses to dairy manure or ammonium nitrate applications Soil Bioi Biochem 33, 1011-1019 https://doi.org/10.1016/S0038-0717(01)00004-9
  14. Pusey PL (1996) Micro-organisms as agents in plant disease 1control. Crop Protection Agents from Nature: Natural Products and Analogues. Crit Rep Appl Chem 35, 426-436
  15. Thirup L, Johansen A, and Winding A (2003) Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microb Ecol 43, 383-392 https://doi.org/10.1111/j.1574-6941.2003.tb01079.x
  16. Tunlid A and White DC (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. Soil Biochemistry 7, 229-262
  17. Van Veen JA, Van Overbeek LS, and Van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Rev 61, 121-135
  18. Yao H, He Z, Wilson MJ, and Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40, 223-237 https://doi.org/10.1007/s002480000053

Cited by

  1. 토양효소활성을 이용한 미생물제제 처리 고추경작지의 토양미생물군집 분석 vol.55, pp.1, 2009, https://doi.org/10.3839/jabc.2011.058
  2. 경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향 vol.40, pp.1, 2009, https://doi.org/10.4014/kjmb.1110.10007
  3. Bacillus subtilis GDYA-1로부터 분리한 benzoic acid의 식물병원성 곰팡이에 대한 항균활성 vol.18, pp.2, 2012, https://doi.org/10.5423/rpd.2012.18.2.109