• Title/Summary/Keyword: antifungal bacteria

Search Result 292, Processing Time 0.029 seconds

Isolation and Characterization of Bacillus Species Having Antifungal Activity Against Pathogens of Ginseng Damping Off (인삼모잘록병원균에 항균활성을 갖는 Bacillus 균의 분리 및 특성조사)

  • Park, Kyeong Hun;Park, Hong Woo;Lee, Seong Woo;Lee, Seung Ho;Myung, Kyung Sun;Lee, Sang Yeob;Song, Jaekyeong;Kim, Young Tak;Park, Kyoung Soo;Kim, Young Ock
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.380-387
    • /
    • 2016
  • This study was performed to select potentially available biological control agent from soil bacteria for prevention of ginseng damping off. More than five hundred strains were isolated from ginseng rhizosphere soil. By testing antifungal activity, we have selected three soil bacteria strains and their ability to produce antibiotics and lytic enzymes such as cellulase, protease and pectate lyase was examined. Also, the presence of genes for biosynthesis of lipopeptide such as fengycin, bacillomycin D, surfactin, iturin A, and zwittermicin A was investigated in selected strains. All three strains produced cellulase, protease, and xylanase. Moreover, these strains had gene for biosynthesis of bacillomycin D, surfactin, and iturin A. ES1 and ES3 strains were identified Bacillus methylotrophucus and ES2 was confirmed Bacillus amyloliquefaciens using phylogenetic analysis on the basis of 16S rRNA gene sequences. In field test, control value of ES1, ES2 and ES3 treatment was 32.4%, 46.8% and 36.7%, respectively. This results indicate that antagonistic microbes with high ability of antifungal and lytic enzyme activity can be used as a useful biological control agent to control ginseng damping off.

Studies on Biological Activity of Woad Extractives (XV) - Antimicrobial and antioxidative activities of extracts from diverse families - (수목 추출물의 생리활성에 관한 연구(XV) - 과별(科別)에 따른 항균 및 항산화 활성 -)

  • Lee, Sung-Suk;Lee, Hak-Ju;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.8-17
    • /
    • 2004
  • Antifungal, antibacterial, and antioxidative activities of ethanol extracts from 65 families 263 species were investigated to select tree species for the utilization of natural fungicide or preservative resources. The antifungal activities of extracts from wood, leaf and bark were measured as hyphal growth inhibition rate using four plant pathogenic and five wood rotting fungi. High inhibitory effect on the fungi growth was found in five species of Pinaceae (Pinus koraiensis, P. rigida, P. densiflora, P. banksiana. Cedrus deodara), three species of Cupressaceae (Juniperus rigida, J. chinensis, Chamaecyparis obtusa) and three species of Leguminosae (Albizzia julibrisssin, Sophora japonica, Maackia amurensis), respectively. Antibacterial activities of ethanol extracts were determined by means of disc-agar plate diffusion method using three gram-positive and five gram-negative bacteria. The ethanol extracts, which showed prominent effect on the suppression of bacteria growth, were six species of Betulaceae (Carpinus tschonoskii, C. coreana, C. laxiflora, Alnus hirsuta, A. firma, Betula schmidtii), five species of Fagaceae (Castanopsis cuspidata var. sieboldii, Quercus serrata, Q. mongolica, Q aliena, C crenata), four species of Euphorbiaceae (Aleurites fordii, Sapium sebiferum, S japonicum Mallotus japonicus) and three species of Elaeagnaceae (Elaeagnus umbellata, Elaeagnus glanbra, Elaeagnus macrophylla). According to these results, the extracts from Zelkova serrata, Pinus densiflora, Maackia amurensis, Chamaecyparis obtusa and Juniperus chinensis could be available for natural fungicide or food preservatives, because ethanol extracts from these species indicated excellent antifungal and antibacterial activities. In order to test antioxidative activities of ethanol extracts, free radical scavenging method was adopted with 1,1-diphenyl-2-picrylhydrohydrazyl (DPPH). Free radical scavenging activity was proved very high in the extracts of eight species of Rosaceae (Eriobotrya japonica, Prunus takesimensis, P yedoensis, P padus, P armeniaca var. ansu, Chaenomeles sinensis, Stephanandra incisa, Rosa multiflora) and five species of Ericaceae (Rhododenron mucronulatum, R. scblippenbacbii, R. yedoense var. poukhanense, Vaccinium bracteatum, V oldbami), resvectively. It turned out from this study that only six species among 48 species of Rosaceae showed less than 80% free radical scavenging activity. As a consequences, it could be deduced that the components effective on antioxidative activity commonly exist in Rosaceae plant family.

Biological Control of Anthracnose (Colletotrichum gloeosporioides) in Red Pepper by Bacillus sp. CS-52 (Bacillus sp. CS-52를 이용한 고추 탄저병 (Colletotrichum gloeosporioides) 방제 특성)

  • Kwon, Joung-Ja;Lee, Jung-Bok;Kim, Beam-Soo;Lee, Eun-Ho;Kang, Kyeong-Muk;Shim, Jang-Sub;Joo, Woo-Hong;Jeon, Chun-Pyo;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • This study was carried out in order to develop a biological control of anthracnose of red pepper caused by fungal pathogens. In particular, this study focuses on the Colletotrichum species, which includes important fungal pathogens causing a great deal of damage to red pepper. Antagonistic bacteria were isolated from the soil of pepper fields, which were then tested for biocontrol activity against the Colletotrichum gloeosporioides anthracnose pathogen of pepper. Based on the 16S rRNA sequence analysis, the isolated bacterial strain CS-52 was identical to Bacillus sp. The culture broth of Bacillus sp. CS-52 had antifungal activity toward the hyphae and spores of C. gloeosporioides. Moreover, the substances with antifungal activity were optimized when Bacillus sp. CS-52 was grown aerobically in a medium composed of 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $KH_2PO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, and 0.15% yeast extract at $30^{\circ}C$. The inhibition of spore formation resulting from cellulase, siderophores, and indole-3-acetic acid (IAA), were produced at 24 h, 48 h, and 72 h, respectively. Bacillus sp. CS-52 also exhibited its potent fungicidal activity against anthracnose in an in vivo test, at a level of 70% when compared to chemical fungicides. These results identified substances with antifungal activity produced by Bacillus sp. CS-52 for the biological control of major plant pathogens in red pepper. Further studies will investigate the synergistic effect promoting better growth and antifungal activity by the formulation of substances with antifungal activity.

Isolation and Characterization of Plant Growth Promoting Bacteria Pseudomonas sp. SH-26 from Peat Soil (이탄 토양으로부터 식물생육촉진세균 Pseudomonas sp. SH-26의 분리 및 특성)

  • Ho-Young Shin;Da-Son Kim;Chang-Ho Lee;Dong-Soek Lee;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-207
    • /
    • 2024
  • We conducted to investigate both plant growth-promoting and plant disease-controlling activities of bacterial strains isolated from soil. Among the 48 isolated strains, SH-23, SH-26, SH-29, and SH-33 were identified as excellent strains for the production of β-glucosidase, cellulase, amylase, and protease. These 4 strains exhibited antifungal activity against plant pathogenic fungi (Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Colletotrichum acutatum). Strain SH-26, which exhibited excellent organic matter decomposition and antifungal activity against plant pathogenic fungi, was selected as the final superior strain. Upon determining the 16S rRNA gene sequence of the selected SH-26 strain, it exhibited 100% similarity with Pseudomonas knackmussii HG322950 B13T, Pseudomonas citronellolis BCZY01000096 NBRC 103043T, and Pseudomonas delhiensis jgi.1118306 RLD-1T. Furthermore, it was confirmed that the Pseudomonas sp. SH-26 exhibited siderophore production, nitrogen fixation ability, and the production of Indole-3-acetic acid.

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. (Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제)

  • Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 2016
  • Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans (오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과)

  • Chung, Kyung Tae;Kim, Byoung Woo
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.

Suppression Effect and Mechanism of Citrus Scab in the Citrus Pre-inoculated with Rhizobacterial Strains (근권세균을 전 접종한 감귤에서 감귤 더뎅이병 억제 효과 및 기작)

  • Kim, So-Yeon;Hyun, Jae-Wook;Jeun, Yong-Chull
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.302-310
    • /
    • 2011
  • Elsinoe fawcettii is one of major pathogenic fungi which cause citrus scab diseases, resulting in fruit blemishes that reduce the economic value of fruit. By increasing interest to safe products of crops, the alternative methods of disease control is highly required. We investigated whether the 215 bacterial strains isolated from Jeju Island possess antifungal effect or suppression effect on the symptom development by Elsinoe fawcettii on citrus. Among them, three bacterial strains THJ 609-3, MRL408-3, and TRH423-3 that exhibited antifungal capacity against Elsinoe fawcettii were selected. To illustrate the disease suppression mechanism, pre-inoculation with the selected bacterial strains was carried out whether could suppress the citrus crab on the leaves. The observation with a fluorescence microscope revealed that the selected bacteria could decrease the number of fungal spores. The ratio of germ tube formation was also decreased by the selected bacterial strains at one day after fungus challenge. The strain THJ 609-3 was identified as Pseudomonas putida as a result of analyzing the internal transcript spaces of the rhizobacterial rDNA. The strains MRL 408-3 and TRH 423-3 were identified as Burkholderia gladioli. Our results may be valuable when the selected rhizobacterial strains used as the environment-friendly microbe for biological control on citrus scab caused by Elsinoe fawcettii.

Chitinase Production and Isolation of Serratia plymuthica AL-1 Antagonistic to White Rot Fungi from Allium fistulosum Roots. (대파 뿌리로부터 흑색썩음균핵병균에 길항하는 Serratia plymuthica AL-1의 분리 및 Chitinase의 생산)

  • 주길재;이익희;김진호
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2002
  • This study was carried out to isolate antagonistic bacterium against Sclerotium cepivorum causing Allium fistulosum white rot. Total of 146 strains were isolated from A. fistulosum roots. The isolates were screened for antagonism to S. cepivorum and the isolated strain No. AL-1 was selected among these bacteria. It was identified as Serratia plymuthica based on morphological and physiological characteristics according to the Bergey's mannual of systematic bacteriology and 16S rDNA sequences methods. Serratia plymuthica AL-1 showed broad spectrum of antifungal activities against plant pathogenic fungi Alternaria altrata, Colletotrichum gleosporioids, Phoma sp., Rhizoctonia solani, Sclerotinia sclerotiorum, Stemphylium solani, Fusarium oxysporium niveum but not inhibited Didymella bryoniae. When S. plymuthica AL-1 cultivated in the TSB medium containing 1% colloidal chitin, the high molecular fraction (>10 kDa) have chitinase activity (3.2 units/ml) and the low molecular fraction (<10 kDa) have not chitinase activity. Oppositely, after heat treatment (80℃ for 30 min) of the cultivation supernatant, the high molecular fractions have not antifungal activity but the low molecular fractions have antifungal activity.

Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum (감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명)

  • Lee, Ji-Hyun;Seo, Mun-Won;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2012
  • In order to develop environment friendly fungicide for the control of citrus green mold (Penicillium digitatum) using endophytic bacteria, the 21 bacterial isolates were isolated from citrus leaves in seven different orchards in Jeju Province. Among the 21 bacterial isolates, 5 bacterial isolates presented antifungal activity against green mold pathogen P. digitatum. The CB3 isolate, which showed the most strong antagonistic effect, was selected through opposite culture against the pathogen. The rod-shaped, gram-positive bacterium CB3 was identified as Bacillus velezensis based on morphological, physiological characteristics, 16S rDNA, and gyr A gene sequence analysis. The isolate CB3 showed strong antifungal activity against two citrus postharvest pathogen P. digitatum. Citrus fruits were treated by wound inoculation with P. digitatum pathogen, and the control efficacy of CB3 culture broth was 66.7% ($1{\times}10^8$ cfu/ml). In conclusion, The stability of CB3 and its strong antifungal activity also lead us to believe that it has potential for application as an environment friendly biological control agent.

Isolation and Characterization of Bacillus Species Possessing Antifungal Activity against Ginseng Root Rot Pathogens (인삼 뿌리썩음병에 길항력이 있는 Bacillus 균의 분리 동정 및 특성 조사)

  • Kim, Byung-Yong;Ahn, Jae-Hyung;Weon, Hang-Yeon;Song, Jaekyeong;Kim, Sung-Il;Kim, Wan-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.357-363
    • /
    • 2012
  • Ginseng (Panax ginseng C. A. Meyer) is an economically important crop in Korea. While the consumption of the crop is gradually increasing, the yield is decreasing due to the injury of continuous cultivation or infection of soil-borne fungal pathogens such as Cylindrocarpon destructans, Fusarium solani, Rhizoctonia solani and Sclerotinia nivalis. In order to find promising biocontrol agents, we have isolated 439 soil bacteria from ginseng cultivated soil and tested their antifungal activities against ginseng rot pathogens. Among them, 3 strains were finally selected and tested for the elucidation of their genetic and biochemical properties. They were identified as Bacillus amyloliquefaciens using phylogenetic analysis based on 16S rRNA gene sequences. Moreover, all selected strains showed positive reaction for PCR detection targeting biosynthetic gene sequences of iturin A and surfactin. The results provided promising evidences that the bacterial strains isolated from ginseng cultivated soil can be novel biocontrol agents for ginseng cultivaion.