• Title/Summary/Keyword: anti-windup control

Search Result 87, Processing Time 0.28 seconds

A Comparative Study on Anti-windup Schemes for PID Control Systems (PID제어계를 위한 누적방지기법의 비교)

  • 류지수;허학범;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.127-127
    • /
    • 2000
  • The anti-windup schemes developed so far are summarized and the similarities/differences schemes are discussed. The anti-windup schemes are applied to a DC servomotor control system with PID controller to perform comparative study and sensitivity analysis. Based on those results, some criteria for choosing anti-windup scheme are suggested. The results of this study provide a very useful guideline for selecting and designing the anti-windup scheme for various types of PID control systems.

  • PDF

A New Unified Method for Anti-windup and Bumpless Transfer (누적방지 무충돌전환을 위한 새로운 통합형 기법)

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.655-660
    • /
    • 2009
  • In many real applications, the discrepancy problem between controller outputs and plant inputs or the abrupt variation problem of controller outputs can occur. These problems have a negative effect on control performance and stability. It is well-known that two phenomena called 'windup' and 'bump' cause these problems. So far these problems have been studied separately in each side of the anti-windup and the bumpless transfer. This paper proposes a new unified method combines the anti-windup and the bumpless transfer method using the linear quadratic minimization and a proper state space model representation for the anti-windup controller. The proposed method has a feature that it takes account of both the anti-windup and the bumpless transfer in one formula. Finally, we exemplify the performance of the proposed method via numerical examples using the controller switching between the anti-windup PID controller and the anti-windup LQ controller.

EA-based Tuning of a PID Controller with an Anti-windup Scheme (안티와인드업 기법을 가지는 PID 제어기의 EA 기반 동조)

  • Jin, Gang-Gyoo;Park, Dong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.867-872
    • /
    • 2013
  • Many practical processes in industry have nonlinearities of some forms. One commonly encountered form is actuator saturation which can cause a detrimental effect known as integrator windup. Therefore, a strategy of attenuating the effects of integrator windup is required to guarantee the stability and performance of the overall control system. In this paper, optimal tuning of a PID (Proportional-Integral-Derivative) controller with an anti-windup scheme is presented to enhance the tracking performance of the PID control system in the presence of the actuator saturation. First, we investigate effective anti-windup schemes. Then, the parameters of both the PID controller and the anti-windup scheme are optimally tuned by an EA (Evolutionary Algorithm) such as the IAE (Integral of Absolute Error) is minimized. A set of simulation works on two high-order processes demonstrates the benefit of the proposed method.

Comparison and Evaluation of Anti-Windup PI Controllers

  • Li, Xin-Lan;Park, Jong-Gyu;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • This paper proposes a method for comparing and evaluating anti-windup proportional-integral (PI) control strategies. The so-called PI plane is used and its coordinate is composed of the error and the integral state. In addition, an anti-windup PI controller with integral state prediction is proposed. The anti-windup scheme can be easily analyzed and evaluated on the PI plane in detail. Representative anti-windup methods are experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage-source inverter (VSI). The experimental results compare the anti-windup PI controllers. It is empathized that the initial value of the integral state at the beginning of the linear range dominates the control performance in terms of overshoot and settling time.

A New Anti-windup Method Using the Linear Quadratic Observer (LQ관측기를 사용한 새로운 누적방지 기법)

  • Kim, Tae-Shin;Yang, Ji-Hyuk;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2010
  • In order to overcome some problems of existing anti-windup methods, this paper defines LQ (Linear Quadratic) observer and proposes a new anti-windup method using the LQ observer. LQ observer is derived by linear quadratic optimization in order to calculate controller states, which make the controller outputs equal to the plant inputs. And we propose an algorithm so that it can be implemented by a digital controller easily. The relationship between the design parameters and the anti-windup performance is shown via some numerical examples, which cover the cases with the anti-windup method using LQ observer designed and the case without it. Finally, the anti-windup performance of the proposed method is exemplified via comparison with the existing model-based conditioning scheme method[4].

Anti-Windup Strategy of PI Controller without Overshoot (오버슈터 없는 PI 제어기의 Anti-Windup 기법)

  • Yun, Won-Eel;Choi, Jong-Woo;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.538-541
    • /
    • 2005
  • Most realistic control systems contain nonlinearities of some form. One nonlinearity commonly found in control systems is a saturating element. If integral control is applied to such a system to eliminate steady state error, an undesired side effect known as integrator windup may occur when lage setpoint changes are made. This effect leads to a characteristic step response with a large overshoot and a very high settling time. To avoid this situation, many different anti-windup strategies have been suggested. But existing strategies remain over shoot and high settling time. This paper proposes a new anti-windup strategy for PI speed controllers. When the speed control system is changed P controller to PI controller. Integrator has an appropriate initial value. This value results over shoot and high settling time. The SIMULINK/MATLAB-based comparative simulation results and experiment results of speed controller have shown its superior control performance to that of a proposed anti-windup speed controller.

  • PDF

Development of Quad-rotor with Anti-Windup Based PI controller and Hovering Attitude Control Flight Test (적분누적 방지기법 기반 자세제어기를 이용한 쿼드로터 개발과 호버링 자세 제어 비행 실험)

  • Park, Daejin;Park, Cheongeon;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.48-54
    • /
    • 2018
  • This paper deals with a development of a quad-rotor for a hovering attitude control. First, a rotational dynamics are derived to design an attitude controller. The attitude controller is based on PI (Proportional-Integral) controller. For a stable attitude control, an anti-windup method applies to the PI attitude controller. Additionally, a complementary filter is used to obtain more reliable attitude. Gain values of the attitude controllers based on the anti-windup method are obtained through tests. Finally, the quad-rotor with the anti-windup based PI attitude controller is developed and a hovering attitude control flight tests are performed. As a result, the developed quad-rotor is capable of stable hovering.

Anti-Windup Controller Design for the Ship with the Rudder Saturation (Rudder 엑츄에이터 포화특성을 고려한 Anti-Windup 제어계의 설계)

  • 김영복;최명수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 2002
  • In the actual control systems, there exist many kinds of restrictions or nonlinearities. However, due to the nonlinearities in actuators and sensors, the designed controller may not be applicable in some practical situations. One such nonlinearity is amplitude saturation in actuators. Although sometimes it may be ignored, in other cases failure to consider actuator saturation may severely degrade closed-loop system performance and even lead to instability. On the other hand, limiting the controller gain to avoid saturation sacrifices control effort and may lead to loss of performance. Consequently, in some cases, the actuator saturation must be explicitly taken into account to ensure desired performance. However, in this paper, an anti-windup control system design method is introduced to suppress the windup due to the amplitude saturation of the actuator. The proposed control system has very simple design process and guarantees the good control performance. The validity of the proposed control system will be shown by comparing with the results of a reported paper.

Speed Control of Switch Reluctance Motor using Modified Anti-Windup PI Controller and Braking Mode (Modified Anti-Windup PI 제어기와 Braking Mode를 이용한 SRM의 속도 제어)

  • Kim, Hak-Sung;Kim, Yuen-Chung;Kim, Jae-Moon;Yoon, Yong-Ho;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.33-39
    • /
    • 2007
  • In this paper, novel topology for fast response of various loads is proposed. The windup phenomenon appears and results in performance degradation when the PI controller output is saturated. A new anti-windup PI controller is proposed to improve the control performance of variable speed motor drives, and it is experimentally applied to the speed control of a hysteresis current-controlled SRM driven by an asymmetry bridge converter. The experimental results show that the speed response has much improved performance, such as small overshoot and fast settling time, over the conventional PI control.

Development of Anti-windup Techniques for Cascade Control System (다단제어용 안티 와인드업 기술 개발)

  • Bae, Jeong Eun;Kim, Kyeong Hoon;Chu, Syng Chul;Heo, Jaepil;Lim, Sanghun;Sung, Su Whan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.430-437
    • /
    • 2020
  • In this research, the anti-windup techniques for the cascade control system are newly developed. Cascade control system has an additional internal feedback control loop to reject disturbances better than the conventional control system. Remarkable difference between the conventional single-loop control system and the cascade control system is the interaction that the controller output saturation of the secondary control loop strongly affects the integral action of the primary control loop. In industry, local back calculation anti-windup method has been mainly used for each controller without considering the interaction between the two controllers. But it cannot eliminate the integral-windup of the primary controller originated from the saturation of the secondary controller output. To solve the problem, the two anti-windup techniques of the cascade conditional integration and the cascade back calculation are proposed in this research by extending the local anti-windup techniques for the single-loop control system to the cascade control system. Simulation confirmed that the proposed methods can effectively remove the integral windup of the primary controller caused by the saturation of the secondary controller output and show good control performances for various types of processes and controllers. If the reliability of the proposed methods is proved through the applications to real processes in the future, they would highly contribute to improving the control performances of the cascade control system in industry.