• Title/Summary/Keyword: anti-inflammatory$NF-{\kappa}B$

Search Result 748, Processing Time 0.029 seconds

A Novel Synthetic Compound, YH-1118, Inhibited LPS-Induced Inflammatory Response by Suppressing IκB Kinase/NF-κB Pathway in Raw 264.7 Cells

  • Yun, Chang Hyun;Jang, Eun Jung;Kwon, Soon Cheon;Lee, Mee-Young;Lee, Sangku;Oh, Sei-Ryang;Lee, Hyeong-Kyu;Ahn, Kyung-Seop;Lee, Ho-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • For the search of a potent first-in-class compound to inactivate macrophages responsible for inflammatory responses, in the present study, we investigated the anti-nflammatory effects of YH-1118, a novel synthetic compound, in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, Raw 264.7. YH-1118 inhibited LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression at both the protein and mRNA levels. The suppression of LPS-induced iNOS expression by YH-1118 was mediated via nuclear factor kappa B (NF-κB), but not activator protein-1 (AP-1) transcription factor. This was supported by the finding that YH-1118 attenuated the phosphorylation of inhibitor of κBα (IκBα) and nuclear translocation and DNA binding activity of NF-κB. Through the mechanisms that YH-1118 inhibited the activation of IκB kinases (IKKs), upstream activators of NF-κB, or p38 MAPK, YH-1118 significantly suppressed LPS-induced production of pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 (p < 0.05). In conclusion, our results suggest that YH-1118 inhibits LPS-induced inflammatory responses by blocking IKK and NF-κB activation in macrophages, and may be a therapeutic candidate for the treatment of various inflammatory diseases.

Effects of anti-inflammatory on Perilla frutescens var. crispa Induced by mutants with γ-Ray (감마선을 이용한 육종 차조기의 항염증 효과)

  • Sim, Boo-Yong;Park, Jung-Hyun;Kim, Sung-Kyu;Ji, Joong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.488-497
    • /
    • 2019
  • The purpose of this study was to confirmed anti-inflammatory effect the apple Induced by mutants with ${\gamma}-Ray$ extract. Cell viability was assessed by MTT assay using RAW 264.7 cells. The extracts measured through changes in the levels of reactive oxygen species (ROS), nitric oxide (NO), inflammatory cytokines, NF-kB, and COX-2 on LPS-induced RAW 264.7 cells. All test results were analyzed by ELISA reader, Luminex and RT-PCR. In result, the extracts was not toxic below in 25 ug/ml, and extracts was inhibited the productions nitric oxide, ROS, cytokines (IL-1b, IL-6, TNF-a), NF-kB and COX-2 in LPS-induced RAW 264.7 cells. Also, the expression levels were decreased on mRNA of $NF-{\kappa}B$ and COX-2. In other words, Perilla frutescens var. crispa Induced by mutants with ${\gamma}-Ray$ extracts showed significant anti-inflammatory effect. These results may be developed as a raw material for new health food and therapeutics to ease the related to the above mediators.

Anti-Inflammatory Effect of Ethanol Extract from the Seeds of Arctium Lappa L. in Vascular Endothelial Cells (혈관내피세포에서 우방자(牛蒡子) 에탄올 추출물의 항염증 효과)

  • Lee, Yun-Jung;Yoon, Jung-Joo;Kim, Hye-Yoom;Ahn, You-Mee;Hong, Mi-Hyeon;Son, Chan-Ok;Na, Se-Won;Lee, Ho-Sub;Kang, Dae-Gill
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.3
    • /
    • pp.20-31
    • /
    • 2019
  • Objectives: The seeds from Arctium lappa have been considered for its various pharmacological properties, which include anti-carcinogenic, anti-inflammatory, anti-diabetic, and anti-viral activities. Methods: In the present study, we investigated the anti-inflammatory effect of the ethanol extract from the seeds of Arctium lappa L (EAL) on cytokine-induced vascular inflammation in human umbilical vein endothelial cells (HUVEC). Results: Pretreatment with EAL significantly decreased tumor necrosis factor alpha ($TNF-{\alpha}$)-induced cell adhesion molecules expression such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) in a dose-dependent manner. Cell adhesion assay showed that pretreatment with EAL suppressed HUVEC-monocyte adhesion by $TNF-{\alpha}$ over $1{\mu}g/ml$ concentration. We investigated the involvement of nuclear transcription factor kappa-B ($NF-{\kappa}B$) in $TNF-{\alpha}$-induced vascular inflammation. $NF-{\kappa}B$ p65 nuclear expression was induced by $TNF-{\alpha}$, however, pretreatment with EAL was attenuated that nuclear translocation. In cytoplasm, EAL was also attenuated $TNF-{\alpha}$-induced decrease of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) expression. Moreover, EAL significantly decreased $TNF-{\alpha}$-induced production of intracellular reactive oxygen species (ROS). Conclusions: Taken together, our findings suggest that seeds of Arctium lappa L could be a therapeutic herb for prevention of cardiovascular diseases throughout the inhibition of vascular endothelial inflammation.

DHA and EPA Down-regulate COX-2 Expression through Suppression of $NF-{\kappa}B$ Activity in LPS-treated Human Umbilical Vein Endothelial Cells

  • Lee, Soon-Ae;Kim, Hye-Jung;Chang, Ki-Churl;Baek, Jong-Chul;Park, Ji-Kwon;Shin, Jeong-Kyu;Choi, Won-Jun;Lee, Jong-Hak;Paik, Won-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.301-307
    • /
    • 2009
  • Inflammatory processes of vascular endothelial cells play a key role in the development ofatherosclerosis. We determined the anti-inflammatory effects and mechanisms of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on LPS-treated human umbilical vein endothelial cells (HUVECs) to evaluate their cardioproteerive potential. Cells were pretreated with DHA, EPA, or troglitazone prior to activation with LPS. Expression of COX-2, prostaglandin $E_2$ ($PGE_2$) and IL-6 production, and $NF-{\kappa}B$ activity were measured by Western blot, ELISA, and luciferase activity, respectively. Results showed that EPA, DHA, or troglitazone significantly reduced COX-2 expression, $NF-{\kappa}B$ luciferase activity, and $PGE_2$ and IL-6 production in a dose-dependent fashion. Interestingly, low doses (10 ${\mu}$M) of DHA and EPA, but not troglitozone, significantly increased the activity of $NF-{\kappa}B$ in resting HUVECs. Our study suggests that while DHA, EPA, and troglitazone may be protective on HUVECs under inflammatory conditions in a dose-dependent manner. However there may be some negative effects when the concentrations are abnormally low, even in normal endothelium.

Inhibitory Effect of Kamisopunghwalhyeol-tang (Jiaweishufenghuoxie-tang) on Inflammatory Cytokine Production and $NF-{\kappa}B$ and AP-1 Activation in Cultured Humau Fibroblast-like Synoviocytes (가미속풍활형탕이 human fibroblast-like synoviocytes 내 염증 유발 cytokine과 전사인자에 미치는 영향)

  • 양동원;오민석;김동희
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.84-95
    • /
    • 2003
  • Objective : This study was carried out to investigate the effects of Kamisopunghwalhyeol-tang (Jiaweishujenghuoxie-tang; Kami-SPHHT) on the immunity responses of the Synoviocytes isolated from the patients on rheumatoid arthritis. Methods : Cells were stimulated by $Interleukin-1{\beta}$ and Tumor Necrosis $Factor-{\alpha}$ in the presence or absence of Kami-SPHHT, and then induced cytokine mRNA levels were determined by RT-PCR and real-time quantitative RT-PCR. Results : Levels of $IL-1{\beta},{\;}IL-6,{\;}TNF-{\alpha}$, COX-2, and NOS II mRNA expressions significantly decreased in Kami-SPHHT treated cells compared to non-treated control cells. Also, DNA-binding activity of $NF-{\kappa}B$ and AP-l decreased in Kami- SPHHT treated hFLSs. Conclusion : These results suggest that Kami-SPHHT may be involved in anti-inflammatory reactions by inducing cytokine gene expression in synoviocytes, and further in vivo examination on its efficacy can provide potential application for the treatment of rheumatoid arthritis.

  • PDF

Fractionated Coptis chinensis Extract and Its Bioactive Component Suppress Propionibacterium acnes-Stimulated Inflammation in Human Keratinocytes

  • Lee, Jin Wook;Kang, Yoon Joong;Choi, Hyun Kyung;Yoon, Young Geol
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.839-848
    • /
    • 2018
  • Coptis chinensis (CC) is widely used in Asian countries to treat inflammatory diseases. We investigated the anti-inflammatory activity of the aqueous fraction separated from CC extract and of berberine, its key bioactive component, in human keratinocytes and the possible molecular mechanisms underlying this. Treating HaCaT keratinocytic cells with heat-killed Propionibacterium acnes induced nitric oxide and proinflammatory cytokine (e.g., tumor necrosis $factor-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-8) production and their mRNA expression; these effects were suppressed by pretreatment with the aqueous fraction or berberine, which also suppressed the phosphorylation of ERK, JNK, and p38 kinases and the nuclear expression of nuclear factor $(NF)-{\kappa}B$ p65 in P. acnes-stimulated cells. Thus, the aqueous fraction and berberine effectively exerted anti-inflammatory activities by suppressing mitogen-activated protein kinase and $NF-{\kappa}B$ signaling pathways in human keratinocytes and may be used for treating P. acnes-induced inflammatory skin diseases.

Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages (Lipopolysaccaride로 유도된 Raw 264.7 세포에서 큰열매모자반 에탄올 추출물의 항염증 활성)

  • Cheon, Ji Min;Kim, Hyang Suk;Choi, Eun Ok;Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1437-1444
    • /
    • 2017
  • Sargassum macrocarpum is a widely distributed marine brown algae found in the North Pacific. The objective of this study was to evaluate the anti-inflammatory activity of an ethanol extract of S. macrocarpum (EESM). First, we investigated the anti-inflammatory activities of EESM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. EESM treatment suppressed nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production and inhibited the expressions of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, the expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-1 beta ($IL-1{\beta}$), was decreased in a dose dependent manner. Investigation of the signaling pathways of nuclear factor kappa B ($NF-{\kappa}B$), phosphoinositide-3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) revealed suppression of $NF-{\kappa}B$ translocation from the cytosol to nucleus by EESM treatment. The phosphorylation of the Akt and ERK proteins was also inhibited by EESM treatment. EESM treatment also stimulated the expression of the heme oxygenase-1 (HO-1) enzyme and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). These results suggest that EESM has anti-inflammatory activity and could have potential uses in the field of nutraceuticals.

The Role of Intestinal Microflora in Anti-Inflammatory Effect of Baicalin in Mice

  • Jung, Myung-Ah;Jang, Se-Eun;Hong, Sung-Woon;Hana, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.36-42
    • /
    • 2012
  • Baicalin, a main constituent of the rhizome of Scutellaria baicalensis, is metabolized to baicalein and oroxylin A in the intestine before its absorption. To understand the role of intestinal microflora in the pharmacological activities of baicalin, we investigated its anti-inflammatory effect in mice treated with and without antibiotics. Orally administered baicalin showed the anti-inflammatory effect in mice than intraperitoneally treated one, apart from intraperitoneally administered its metabolites, baicalein and oroxylin A, which potently inhibited LPS-induced inflammation. Of these metabolites, oroxylin A showed more potent anti-inflammatory effect. However, treatment with the mixture of cefadroxil, oxytetracycline and erythromycin (COE) significantly attenuated the anti-inflammatory effect of orally administered baicalin in mice. Treatment with COE also reduced intestinal bacterial fecal ${\beta}$-glucuronidase activity. The metabolic activity of human stools is significantly different between individuals, but neither between ages nor between male and female. Baicalin was metabolized to baicalein and oroxylin A, with metabolic activities of $1.427{\pm}0.818$ and $1.025{\pm}0.603$ pmol/min/mg wet weight, respectively. Baicalin and its metabolites also inhibited the expression of pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$, and the activation of NF-${\kappa}B$B in LPS-stimulated peritoneal macrophages. Of them, oroxylin A showed the most potent inhibition. Based on these findings, baicalin may be metabolized to baicalein and oroxylin A by intestinal microflora, which enhance its anti-inflammatory effect by inhibiting NF-${\kappa}B$ activation.

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells

  • Zerin, Tamanna;Lee, Minjung;Jang, Woong Sik;Nam, Kung-Woo;Song, Ho-yeon
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.610-615
    • /
    • 2015
  • Alveolar epithelial cells have been functionally implicated in Mycobacterium tuberculosis infection. This study investigated the role of ursolic acid (UA)-a triterpenoid carboxylic acid with potent antioxidant, anti-tumor, anti-inflammatory, and anti-tuberculosis properties in mycobacterial infection of alveolar epithelial A549 cells. We observed that M. tuberculosis successfully entered A549 cells. Cytotoxicity was mediated by nitric oxide (NO). A549 toxicity peaked along with NO generation 72 h after infection. The NO generated by mycobacterial infection in A549 cells was insufficient to kill mycobacteria, as made evident by the mycobacteria growth indicator tube time to detect (MGIT TTD) and viable cell count assays. Treatment of mycobacteria-infected cells with UA reduced the expression of inducible nitric oxide synthase, NO generation, and eventually improved cell viability. Moreover, UA was found to quench the translocation of the transcription factor, nuclear factor kappa B (NF-${\kappa}B$), from the cytosol to the nucleus in mycobacteria-infected cells. This study is the first to demonstrate the cytotoxic role of NO in the eradication of mycobacteria and the role of UA in reducing this cytotoxicity in A549 cells.