• 제목/요약/키워드: anti-fungal protein

검색결과 30건 처리시간 0.041초

Interaction of Detonation Nanodiamonds with Hispidin

  • Rhee, Changkyu;Kim, Whungwhoe;Burov, Andrey E.;Puzyr, Alexey P.;Bondar, Vladimir S.
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.458-463
    • /
    • 2020
  • Hispidin is a secondary metabolite found in numerous medicinal mushrooms that has attracted significant attention, owing to its distinct biological effects, including antioxidant, anti-inflammatory, antitumor, and cytoprotective properties. Experiments are being carried out to study the interaction of detonation nanodiamonds (DNDs) with synthetic and natural hispidin sourced from extracts of Pholiota sp. fungus. The bioluminescence method is used to determine the adsorption/desorption properties of DNDs toward hispidin. It is found that hispidin forms strong conjugates with DNDs, and the use of various eluents does not result in a significant release of the adsorbed hispidin molecules. DND-bovine serum albumin (BSA) complex, where DNDs serve as a carrier for the protein and the latter acts as a hispidin sorbent, has been developed and applied in hispidin adsorption/desorption tests. The results support the use of the DNDs as a carrier for hispidin in medical applications. They also advocate the application of the DND-BSA complex for isolating the substance from fungal extracts.

A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.389-395
    • /
    • 2021
  • Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.

Inhibitory Effect of Amentoflavone of Selaginella Tamariscina on MMP-9 Expression through NF-${\kappa}$B and AP-1 in Macrophage Raw 264.7 cells

  • Ahn, Byung-Tae;Shin, Sung-Ahn;Kim, Jun-Gi;Park, Won-Hwan
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.243-249
    • /
    • 2007
  • The French paradox has been attributed to the antioxidant properties of flavonoids present in the red wine. Amentoflavone(AF) is a bi-flavonoid compound with anti-fungal and anti-inflammatory activities. We isolated AF from Selaginella tamariscina, and studied its effects on nuclear factor-B(NF-B)-mediated MMP-9 gene expression in RAW264.7 cells. AF blocked the lipopolysaccharide(LPS)-induced expression of MMP-9. Zymographic and immunoblot analyses showed that AF suppressed LPS-induced MMP-9 expression in a dose-dependent manner. To clarify the mechanistic basis for its inhibition of MMP-9 induction, we examined the effect of AF on the transactivation of MMP-9 gene by luciferase reporter activity using -1.59 kb flanking region. AF potently suppressed the reporter gene activity. This inhibition was characterized by down-regulation of MMP-9, which was transcriptionally regulated at NF-B site and activation protein-1 (AP-1) site in the MMP-9 promoter, two important nuclear transcription factors that are involved in MMP-9 expression. These findings indicate the efficacy of AF in inhibiting MMP-9 expression through the transcription factors NF-B and AP-1 on LPS-induced RAW264.7 cells.

황련 유래 Antimicrobial Peptide의 Candida albicans 감염 억제효과 (Effect of Antimicrobial Peptide from Coptidis Rhizoma on Candida albicans Infection)

  • 이주희
    • 약학회지
    • /
    • 제55권3호
    • /
    • pp.227-233
    • /
    • 2011
  • We previously reported the protein isolated from Coptidis Rhizoma (CRP), which has antifungal activity against a fungal pathogen, Candida albicans. In the current study, we investigated what portion in the CRP is responsible for the antifungal activity. For the investigation, the CRP was fractionated on a Shepadex G-50 column. Data resulting from the fractionation, seven fractions were obtained. Fractions (Fr.) I, II, and III eluted initially from the column showed no inhibitory effect on the growth of C. albicans, whereas Fr. IV, V, and VI eluted later revealed inhibition of the growth, and Fr. IV and VI showed potent antifungal activity by broth susceptibility analysis. However, Fr. VI was contained in the CRP more than Fr. IV, which led us to select the VI for the following experiments. In a murine model of a subcutaneous candidiasis caused by C. albicans, the Fr. VI displayed a therapeutic effect on nude mice pretreated with anti-neutrophil monoclonal antibody (RB68C5) and then infected subcutaneously with live C. albicans. At day 16, these mice were healed almost up to 78% of the infected area when compared to infected area of control nude mice that received diluent (Dulbecco's Phosphate-Buffered Saline; DPBS), instead of the Fr. VI (P<0.01). The Fr. VI blocked hyphal formation from blastoconidial form of C. albicans (P<0.01), which might prevent penetration of hyphae to the deeper site of skin and thus helps the healing. In the ionic strength test, the effect of Fr. was influenced by $Ca^{2+}$ ion just like other known antimicrobial peptides, but the influence was affected at an extremely high concentration such as 500 mM. Thus, such ion-concentration is considered to be meaningless in the clinical situation. Considering all data together, Coptidis Rhizoma is appeared to produce an antimicrobial peptide that has therapeutic effect on subcutaneous infection caused by C. albicans.

동충하초 열수 추출물에 의한 인체 간암세포 성장억제 및 apoptosis 유발에 관한 연구 (Induction of Apaopotis by Water Extract of Cordyceps militaris (WECM) in Human Hepatocellular Carcinoma HepG2 Cells.)

  • 김경미;박철;최영현;이원호
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.804-813
    • /
    • 2008
  • 본 연구에서는 전통 민간의학에서 많이 사용되는 동충하초(C. militaris)의 항암 작용에 관한 근거 자료의 제시를 위하여 동충하초 열수 추출물(WECM)의 항암 기전 해석을 시도하였다. 이를 위하여 HepG2 인체 간암세포를 사용하였으며, WECM의 처리에 의하여 HepG2 세포의 증식은 처리 농도의 증가에 따라 매우 억제되었다. WECM 처리에 의한 HepG2 세포의 증식 억제는 암세포의 심한 형태적 변형을 수반하였고, 이는 apoptosis 유도와 연관성이 있음을 DAPI 염색을 통한 apoptotic body 출현의 증가 및 flow cytometry 분석에 의한 sub-G1 기에 속하는 세포 빈도의 증가로 확인하였다. WECM 처리에 의한 HepG2 세포의 증식 억제는 또한 종양 억제 유전자 p53 및 CDKI p21의 발현 증가와도 연관성이 있음을 알 수 있었다. WECM 처리에 의한 apopotosis 유도에서 pro-apoptotic 인자인 Bax의 발현이 전사 및 번역 수준에서 매우 증가하였으며, caspase-3의 활성이 매우 높게 증가되었다. 특히 caspase-3 특이적 억제제인 z-DEVD-fmk로 caspase-3의 활성을 인위적으로 차단시켰을 경우, WECM에 의한 HepG2 세포의 apoptosis 유발에 caspase-3이 중심적인 역할을 하고 있음을 알 수 있었다. 본 연구 결과는 WECM의 생화학적 항암기전 해석을 이해하고 향후 수행될 추가 실험을 위한 기초 자료로서 그 가치가 매우 높은 것으로 생각된다.

Cellular and Molecular Pathology of Fungi on Plants Studied by Modern Electron Microscopy

  • Sanwald, Sigrun-Hippe
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1995년도 Proceedings of special lectures on Molecular Biological Approaches to Plant Disease National Agricultural Science and Technology Institute Suwon, Korea
    • /
    • pp.27-53
    • /
    • 1995
  • In plant pathology there is an increasing necessity for improved cytological techniques as basis for the localization of cellular substances within the dynamic fine structure of the host-(plant)-pathogen-interaction. Low temperature (LT) preparation techniques (shock freezing, freeze substitution, LT embedding) are now successfully applied in plant pathology. They are regarded as important tools to stabilize the dynamic plant-pathogen-interaction as it exists under physiological conditions. - The main advantage of LT techniques versus conventional chemical fixation is seen in the maintenance of the hydration shell of molecules and macromolecular structures. This results in an improved fine structural preservation and in a superior retention of the antigenicity of proteins. - A well defined ultrastructure of small, fungal organisms and large biological samples such as plant material and as well as the plant-pathogen (fungus) infection sites are presented. The mesophyll tissue of Arabidopsis thaliana is characterized by homogeneously structured cytoplasm closely attached to the cell wall. From analyses of the compatible interaction between Erysiphe graminis f. sp. hordei on barley (Hordeum vulgare), various steps in the infection sequence can be identified. Infection sites of powdery mildew on primary leaves of barley are analysed with regard to the fine structural preservation of the haustoria. The presentation s focussed on the ultrastructure of the extrahaustorial matrix and the extrahaustorial membrane. - The integration of improved cellular preservation with a molecular analysis of the infected host cell is achieved by the application of secondary probing techniques, i.e. immunocytochemistry. Recent data on the characterization of freeze substituted powdery mildew and urst infected plant tissue by immunogold methodology are described with special emphasis on the localization of THRGP-like (threonine-hydrxyproline-rich glycoprotein) epitopes. Infection sites of powdery mildew on barley, stem rust as well as leaf rust (Puccinia recondita) on primary leaves of wheat were probed with a polyclonal antiserum to maize THRGP. Cross-reactivity with the anti-THRGP antiserum was observed over the extrahaustorial matrix of the both compatible and incompatible plant-pathogen interactions. The highly localized accumulation of THRGP-like epitopes at the extrahaustorial host-pathogen interface suggests the involvement of structural, interfacial proteins during the infection of monocotyledonous plants by obligate, biotrophic fungi.

  • PDF

한약재박을 이용한 미생물제제의 개발 (Development of Microbial Inoculant Using By-product of Oriental Herbal Medicine)

  • 주길재;김영목;우철주;이오석;김정웅;소재현;곽윤영;이종진;김진호;이인구
    • Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.201-206
    • /
    • 2005
  • 본 연구는 한약재박의 효율적 처리를 위한 실험의 일환으로 한약재박으로부터 유용미생물을 분리하고 이들 미생물로부터 작물생육촉진미생물을 선발하여 한약재박에 적용한 한약재박 미생물제제를 만들어 친환경농업에 이용하고자 실시하였다. 한약재박은 유기물 함량이 93.0%로 높고 조단백질 함량이 11.3%, 조지방 함량이 5.1%, NDF 함량이 49.7% 및 ADF 함량이 33.8%로 나타나 미생물제제의 원료로서도 이용 가치가 높았다. 한약재박으로부터 약 35종의 미생물이 검출되었고, 이들 중 13종이 한약재박 이용성이 높았으며, 작물생육촉진미생물 BL-333 균주를 선발하였다. 선발균주 BL-333을 Bergey's Manual of Systematic Bacteriology 및 16S rDNA 염기서열(589 bp)로 상동성을 조사한 결과 Paenibacillus marcerans로 추정되었다. P. marcerans BL-333 균주는 각종 진균에 대해 대부분 높은 항진균 활성을 나타내었으며, 특히 Fusarium 속과 Collectotrichum 속 등의 진균에 대해 높은 항진균 활성을 나타내었다. P. marcerans BL-333 균주와 한약재박 분쇄물 등으로 제조한 미생물제제는 10종의 작물의 생육조사에서 무처리구보다 $3{\sim}24%$ 증수되는 효과를 나타내었으며, 특히 상추, 무, 배추 및 오이 등에서 생육촉진효과가 우수하였다. 따라서 한약재박 및 한약재박으로부터 얻은 미생물은 퇴비나 미생물제제를 위해 효과적인 재료로서의 활용 가치가 있다고 본다.

Effect of the different cover crop incorporation on glomalin-related soil protein and soybean and maize growth

  • Higo, Masao;Gunji, Kento;Isobe, Katsunori
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.344-344
    • /
    • 2017
  • The glycoprotein known as glomalin-related soil protein (GRSP) is abundantly produced on the hyphae and spores of arbuscular mycorrhizal fungi (AMF) in soil and roots. GRSP play a decisive role in the soil aggregation, but GRSP was also sensitive to agricultural managements. Thus, our objectives were to assess the effect of different cover crop incorporation on the GRSP content in soil and growth of subsequent soybean and maize. Pot experiments with the incorporation of four cover crops were set up. The same amount (666g) of aboveground plant parts of wheat (AMF host), hairy vetch (AMF host), mustard (non-host) and rapeseed (non-host) was separately incorporated into soils. The aboveground plant parts and roots of soybean and maize were grown in each incorporated pots and sampled at 6 and 9 weeks after sowing. Our results showed that the different cover crops incorporation affected soil biological and chemical properties such as EC, $NO_3-N$ content, ${\beta}-glucosidase$ activity, alkaline phosphatase (ALP) activity and GRSP content. The soil EC and $NO_3-N$ content in the hairy vetch, mustard and rapeseed was higher compared to the wheat. The ${\beta}-glucosidase$ activity in the wheat and hairy vetch was significantly higher than that in the mustard and rapeseed, and the ALP activity in the wheat was significantly higher than that in the hairy vetch, mustard, and rapeseed. The GRSP content in the mustard and rapeseed was significantly lower than that of the hairy vetch and wheat. Moreover, The top dry weight and leaf area of soybean and maize in the hairy vetch at 6 weeks were significantly higher compared to the other treatments. Our results indicated that the incorporation of mustard and rapeseed may cause indirectly the decrease of GRSP content and soil enzyme activity in soil. One possible explanation for the decrease of GRSP in non-AMF host crop treatments may be the decrease of AMF density in the soil. AMF are not able to form a symbiotic relationship with Brassicaceae roots due to the release of anti-fungal compounds. This means the AMF may not be able to produce GRSP in the soil. However, the differences in the benefit of cover crop incorporation were shown only by a pot experiment. Comparative investigations of crop residue managements would be applied to both pot experiment and field study to clarify a better selection of cover crops in rotation to encourage GRSP production.

  • PDF

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 춘계학술대회 및 임시총회
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF